
PeekingDuck
Release developer

CVHub AI Singapore

Aug 22, 2022

CONTENTS

1 Introduction 1
1.1 What is PeekingDuck? . 1
1.2 Features . 1
1.3 How PeekingDuck Works . 2
1.4 Acknowledgements . 2
1.5 License . 2
1.6 Communities . 2

2 Getting Started 3
2.1 Documentation Convention . 3
2.2 Standard Install . 3
2.3 Custom Install . 4

3 Tutorials 7
3.1 “Hello Computer Vision” . 7
3.2 Duck Confit . 13
3.3 Custom Nodes . 17
3.4 Peaking Duck . 32
3.5 Calling PeekingDuck in Python . 42
3.6 Using Your Own Models . 50

4 PeekingDuck Ecosystem 63
4.1 PeekingDuck Viewer . 63

5 Model Resources & Information 67
5.1 Object Detection Models . 67
5.2 Pose Estimation Models . 70
5.3 Object Tracking Models . 73
5.4 Crowd Counting Models . 74
5.5 Instance Segmentation Models . 75
5.6 Bibliography . 78

6 Edge AI 81
6.1 Installing TensorRT . 81
6.2 Using TensorRT Models . 81
6.3 Performance Speedup . 82
6.4 References . 85

7 Use Cases 87
7.1 Privacy Protection . 87
7.2 Smart Monitoring . 93

i

7.3 COVID-19 Prevention and Control . 105

8 FAQ and Troubleshooting 113
8.1 How can I post-process and visualize model outputs? . 113
8.2 How can I dynamically use all prior outputs as the input at run time? 113
8.3 How do I debug custom nodes? . 113
8.4 Why does input.visual progress stop before 100%? . 113
8.5 Why does the output screen flash briefly and disappear on my second run? 114

9 Glossary 115

10 API Documentation 117
10.1 input . 117
10.2 augment . 119
10.3 model . 121
10.4 dabble . 136
10.5 draw . 145
10.6 output . 154

Python Module Index 159

Index 161

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is PeekingDuck?

PeekingDuck is an open-source, modular framework in Python, built for Computer Vision (CV) inference. The name
“PeekingDuck” is a play on: “Peeking” in a nod to CV; and “Duck” in duck typing used in Python.

1.2 Features

1.2.1 Build realtime CV pipelines

PeekingDuck enables you to build powerful CV pipelines with minimal lines of code.

1.2.2 Leverage on SOTA models

PeekingDuck comes with various state of the art (SOTA) object detection, pose estimation, object tracking, crowd
counting, and instance segmentation models. Mix and match different nodes to construct solutions for various use
cases.

1.2.3 Create custom nodes

You can create custom nodes to meet your own project’s requirements. PeekingDuck can also be imported as a library
to fit into your existing workflows.

1

https://pypi.org/project/peekingduck
https://pypi.org/project/peekingduck
https://pypi.org/project/peekingduck
https://en.wikipedia.org/wiki/Duck_typing

PeekingDuck, Release developer

1.3 How PeekingDuck Works

Nodes are the building blocks of PeekingDuck. Each node is a wrapper for a pipeline function, and contains information
on how other PeekingDuck nodes may interact with it.

PeekingDuck has 6 types of nodes:

A pipeline governs the behavior of a chain of nodes. The diagram below shows a sample pipeline. Nodes in a pipeline
are called in sequential order, and the output of one node will be the input to another. For example, input.visual
produces img, which is taken in by model.yolo, and model.yolo produces bboxes, which is taken in by draw.bbox.
For ease of visualization, not all the inputs and outputs of these nodes are included in this diagram.

1.4 Acknowledgements

This project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG-
RP-2019-050). Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not reflect the views of the National Research Foundation, Singapore.

1.5 License

PeekingDuck is under the open source Apache License 2.0 (:

Even so, your organization may require legal proof of its right to use PeekingDuck, due to circumstances such as the
following:

• Your organization is using PeekingDuck in a jurisdiction that does not recognize this license

• Your legal department requires a license to be purchased

• Your organization wants to hold a tangible legal document as evidence of the legal right to use and distribute
PeekingDuck

Contact us if any of these circumstances apply to you.

1.6 Communities

• AI Singapore community forum

• Discuss on GitHub

2 Chapter 1. Introduction

https://github.com/aisingapore/PeekingDuck/blob/main/LICENSE
https://aisingapore.org/home/contact
https://community.aisingapore.org/groups/computer-vision/forum/
https://github.com/aisingapore/PeekingDuck/discussions

CHAPTER

TWO

GETTING STARTED

2.1 Documentation Convention

Parts of this documentation and the tutorials are run from the command-line interface (CLI) environment, e.g., via
Terminal in Linux/macOS, or via Anaconda in Windows. There will be examples of commands you need to type as
inputs and text that PeekingDuck will display as outputs. The input commands can be dependent on the current folder
where they are typed.

The following text color scheme is used to illustrate these different contexts:

Color Context Example
Blue Current folder [~user/src]
Green User input: what you type in > peekingduck --version
Black PeekingDuck’s output peekingduck, version v1.2.0

The command prompt is assumed to be the symbol >, your home directory is assumed to be ~user, and the symbol
means to press the <Enter> key.

Putting it altogether, a sample terminal session looks like this:

Terminal Session

[~user/src] > peekingduck --version
peekingduck, version v1.2.0

2.2 Standard Install

2.2.1 Install PeekingDuck

Then run:

PeekingDuck supports Python 3.6 to 3.9.

It is recommended to install PeekingDuck in a Python virtual environment (such as pkd in the above commands), as it
creates an isolated environment for a Python project to install its own dependencies and avoid package version conflicts
with other projects.

3

PeekingDuck, Release developer

Note: For Apple Silicon Mac users, please see Custom Install - Apple Silicon Mac.

2.2.2 Verify PeekingDuck Installation

To check that PeekingDuck is installed successfully, run the following command:

Terminal Session

[~user] > peekingduck verify-install

Changed in version 1.3.0: The verify installation command has been changed from --verify_install to
verify-install.

You should see a video of a person waving his hand (taken from here) with bounding boxes overlaid as shown below:

The video will auto-close when it is run to the end (about 20 seconds, depending on system speed).
To exit earlier, click to select the video window and press q.

2.3 Custom Install

This section covers advanced PeekingDuck installation steps for users with ARM64 devices or Apple Silicon Macs.

2.3.1 Arm64

To install PeekingDuck on an ARM-based device, such as a Raspberry Pi, include the --no-dependencies flag, and
separately install the other dependencies listed in PeekingDuck’s [requirements.txt]:

Terminal Session

[~user] > pip install peekingduck --no-dependencies
[~user] > [install additional dependencies as specified within requirements.txt]

Verify the installation using:

Terminal Session

[~user] > peekingduck verify-install

4 Chapter 2. Getting Started

https://www.youtube.com/watch?v=IKj_z2hgYUM
https://github.com/aisingapore/PeekingDuck/blob/main/requirements.txt

PeekingDuck, Release developer

See here for changes to the verify installation command in version 1.3.0.

You should see a video of a person waving his hand with bounding boxes overlaid.

2.3.2 Apple Silicon Mac

Apple released their advanced ARM-based Apple Silicon M1 chip in late 2020, a significant change from the previous
Intel processors. We’ve successfully installed PeekingDuck on Apple Silicon Macs running macOS Big Sur and macOS
Monterey.

1. Prerequisites:

• Install homebrew

• Install miniforge using homebrew:

Terminal Session

[~user] > brew install miniforge

2. Create conda virtual environment and install base packages:

Terminal Session

[~user] > conda create -n pkd python=3.8
[~user] > conda activate pkd
[~user] > conda install click colorama opencv openblas pyyaml requests scipy shapely tqdm typeguard

3. Install Apple’s Tensorflow build that is optimized for Apple Silicon Macs:

• For macOS Monterey:

Terminal Session

[~user] > conda install -c apple tensorflow-deps
[~user] > pip install tensorflow-macos tensorflow-metal

• For macOS Big Sur:

Terminal Session

[~user] > conda install -c apple tensorflow-deps=2.6.0

2.3. Custom Install 5

https://en.wikipedia.org/wiki/Apple_M1
https://brew.sh/

PeekingDuck, Release developer

[~user] > pip install tensorflow-estimator==2.6.0 tensorflow-macos==2.6.0
[~user] > pip install tensorflow-metal==0.2.0

4. Install PyTorch (currently CPU-only):

Terminal Session

[~user] > pip install torch torchvision

5. Install PeekingDuck and verify installation:

Terminal Session

[~user] > pip install peekingduck --no-dependencies
[~user] > peekingduck verify-install

See here for changes to the verify installation command in version 1.3.0.

You should see a video of a person waving his hand (taken from here) with bounding boxes overlaid as
shown below:

The video will auto-close when it is run to the end (about 20 seconds, depending on system speed).
To exit earlier, click to select the video window and press q.

6 Chapter 2. Getting Started

https://www.youtube.com/watch?v=IKj_z2hgYUM

CHAPTER

THREE

TUTORIALS

The tutorials are presented in order of increasing difficulty, from the basic Hello Computer Vision to the advanced
Peaking Duck. It is recommended to go through these tutorials in order, especially if you are new to PeekingDuck.

3.1 “Hello Computer Vision”

Computer Vision (or CV) is a field in AI that develops techniques to help computers to “see” and “understand” the
contents of digital images like photographs and videos, and to derive meaningful information. Common CV applica-
tions include object detection to detect what objects are present in the image and pose estimation to detect the position
of human limbs relative to the body.

PeekingDuck allows you to build a CV pipeline to analyze and process images and/or videos. This pipeline is made up
of nodes: each node can perform certain CV-related tasks.

This section presents two basic “hello world” examples to demonstrate how to use PeekingDuck for pose estimation
and object detection.

3.1.1 Pose Estimation

To perform pose estimation with PeekingDuck, initialize a new PeekingDuck project using the following commands:

Terminal Session

[~user] > mkdir pose_estimation
[~user] > cd pose_estimation
[~user/pose_estimation] > peekingduck init

peekingduck init will prepare the pose_estimation folder for use with PeekingDuck. It creates a default pipeline file
called pipeline_config.yml and a src folder that will be covered in the later tutorials. The pipeline_config.yml
file looks like this:

1 nodes:
2 - input.visual:
3 source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
4 - model.posenet

(continues on next page)

7

PeekingDuck, Release developer

(continued from previous page)

5 - draw.poses
6 - output.screen

The above forms a pose estimation pipeline and it comprises four nodes that do the following:

1. input.visual: reads the file wave.mp4 from PeekingDuck’s cloud storage

2. model.posenet: runs the PoseNet pose estimation model on it

3. draw.poses: draws a human pose skeleton over the person tracking his hand movement

4. output.screen: outputs everything onto the screen for display

Now, run the pipeline using

Terminal Session

[~user/pose_estimation] > peekingduck run

You should see the following video of a person waving his hand.
Skeletal poses are drawn on him which track the hand movement.

Fig. 1: PeekingDuck’s Pose Estimation Screenshot

You have successfully run a PeekingDuck pose estimation pipeline!

8 Chapter 3. Tutorials

PeekingDuck, Release developer

The video will auto-close when it is completed.
To exit earlier, click to select the video window and press q.

3.1.2 Object Detection

To perform object detection, initialize a new PeekingDuck project using the following commands:

Terminal Session

[~user] > mkdir object_detection
[~user] > cd object_detection
[~user/object_detection] > peekingduck init

Then modify pipeline_config.yml as follows:

1 nodes:
2 - input.visual:
3 source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
4 - model.yolo
5 - draw.bbox
6 - output.screen

The key differences between this and the earlier pipeline are:

Line 4: model.yolo runs the YOLO object detection model
Line 5: draw.bbox draws the bounding box to show the detected person

Run the new object detection pipeline with peekingduck run.

You will see the same video with a bounding box surrounding the person.

That’s it: you have created a new object detection pipeline by changing only two lines!

Note:

Try replacing wave.mp4 with your own video file and run both models.
For best effect, your video file should contain people performing some activities.

3.1. “Hello Computer Vision” 9

PeekingDuck, Release developer

Fig. 2: PeekingDuck’s Object Detection Screenshot

3.1.3 Using a WebCam

If your computer has a webcam attached, you can use it by changing the first input node (line 2) as follows:

1 nodes:
2 - input.visual:
3 source: 0 # use webcam for live video
4 - model.posenet # use pose estimation model
5 - draw.poses # draw skeletal poses
6 - output.screen

Now do a peekingduck run and you will see yourself onscreen. Move your hands around and see PeekingDuck tracking
your poses.

To exit, click to select the video window and press q.

Note: PeekingDuck assumes the webcam is defaulted to input source 0. If your system is configured
differently, you would have to specify the input source by changing the input.visual configuration. See
changing node configuration.

10 Chapter 3. Tutorials

PeekingDuck, Release developer

3.1.4 Pipelines, Nodes and Configs

PeekingDuck comes with a rich collection of nodes that you can use to create your own CV pipelines. Each node can
be customized by changing its configurations or settings.

To get a quick overview of PeekingDuck’s nodes, run the following command:

Terminal Session

[~user] > peekingduck nodes

You will see a comprehensive list of all PeekingDuck’s nodes with links to their readthedocs pages for more infor-
mation.

PeekingDuck supports 6 types of nodes:

A PeekingDuck pipeline is created by stringing together a series of nodes that perform a logical sequence of operations.
Each node has its own set of configurable settings that can be modified to change its behavior. An example pipeline is
shown below:

3.1.5 Bounding Box vs Image Coordinates

PeekingDuck has two (𝑥, 𝑦) coordinate systems, with top-left corner as origin (0, 0):

• Absolute image coordinates
For an image of width 𝑊 and height 𝐻 , the absolute image coordinates are integers from (0, 0) to (𝑊 −
1, 𝐻 − 1). E.g., for a 720 x 480 image, the absolute coordinates range from (0, 0) to (719, 479).

• Relative bounding box coordinates
For an image of width 𝑊 and height 𝐻 , the relative image coordinates are real numbers from (0.0, 0.0) to
(1.0, 1.0). E.g., for a 720 x 480 image, the relative coordinates range from (0.0, 0.0) to (1.0, 1.0).

This means that in order to draw a bounding box onto an image, the bounding box relative coordinates would have to
be converted to the image absolute coordinates.

Using the above figure as an illustration, the bounding box coordinates are given as (0.18, 0.10) top-left and (0.52, 0.88)
bottom-right. To convert them to image coordinates, multiply the x-coordinates by the image width and the y-

3.1. “Hello Computer Vision” 11

PeekingDuck, Release developer

Fig. 3: PeekingDuck’s Image vs Bounding Box Coordinates

12 Chapter 3. Tutorials

PeekingDuck, Release developer

coordinates by the image height, and round the results into integers.

0.18 → 0.18× 720 = 129.6 = 130 (𝑖𝑛𝑡)
0.10 → 0.10× 480 = 48.0 = 48 (𝑖𝑛𝑡)

0.52 → 0.52× 720 = 374.4 = 374 (𝑖𝑛𝑡)
0.88 → 0.88× 480 = 422.4 = 422 (𝑖𝑛𝑡)

Thus, the image coordinates are (130, 48) top-left and (374, 422) bottom-right.

Note: The model nodes return results in relative coordinates.

3.2 Duck Confit

This tutorial presents intermediate recipes for cooking up new PeekingDuck pipelines by modifying the nodes and their
configs.

3.2.1 More Object Detection

This section will demonstrate how to change the settings of PeekingDuck’s nodes to vary their functionalities.

If you had completed the earlier object detection tutorial, you will have the necessary folder and can skip to the next
step. Otherwise, create a new PeekingDuck project as shown below:

Terminal Session

[~user] > mkdir object_detection
[~user] > cd object_detection
[~user/object_detection] > peekingduck init

Next, download this demo video cat_and_computer.mp4 and save it into the object_detection folder.

The folder should contain the following:

object_detection/
cat_and_computer.mp4
pipeline_config.yml
src/

To perform object detection on the cat_and_computer.mp4 file, edit the pipeline_config.yml file as follows:

1 nodes:
2 - input.visual:
3 source: cat_and_computer.mp4
4 - model.yolo:
5 detect: ["cup", "cat", "laptop", "keyboard", "mouse"]
6 - draw.bbox:
7 show_labels: True # configure draw.bbox to display object labels
8 - output.screen

3.2. Duck Confit 13

https://storage.googleapis.com/peekingduck/videos/cat_and_computer.mp4

PeekingDuck, Release developer

Here is a step-by-step explanation of what has been done:

Line 2 input.visual: tells PeekingDuck to load the cat_and_computer.mp4.
Line 4 model.yolo: by default, the YOLO model detects person only.

The cat_and_computer.mp4 contains other classes of objects like cup, cat, laptop, etc.
So we have to change the model settings to detect the other object classes.

Line 6 draw.bbox: reconfigure this node to display the detected object class label.

Run the above with the command peekingduck run.

Fig. 4: Cat and Computer Screenshot

You should see a display of the cat_and_computer.mp4 with the various objects being highlighted by PeekingDuck
in bounding boxes. The 30-second video will auto-close at the end, or you can press q to end early.

Note: The YOLO model can detect 80 different object classes. By default, it only detects the "person"
class. Use detect: ["*"] in the pipeline_config.yml to configure the model to detect all 80
classes.

3.2.2 Record Video File with FPS

This section demonstrates how to record PeekingDuck’s output into a video file. In addition, we will modify the pipeline
by adding new nodes to calculate the frames per second (FPS) and to show the FPS.

Edit pipeline_config.yml as shown below:

1 nodes:
2 - input.visual:
3 source: cat_and_computer.mp4
4 - model.yolo:

(continues on next page)

14 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

5 detect: ["cup", "cat", "laptop", "keyboard", "mouse"]
6 - draw.bbox:
7 show_labels: True
8 - dabble.fps # add new dabble node
9 - draw.legend: # show fps

10 show: ["fps"]
11 - output.screen
12 - output.media_writer: # add new output node
13 output_dir: /folder/to/save/video # this is a folder name

The additions are:

Line 8 dabble.fps: adds new dabble node to the pipeline. This node calculates the FPS.
Line 9 draw.legend : adds new draw node to display the FPS.
Line 12 output.media_writer: adds new output node to save PeekingDuck’s output to a local video
file. It requires a local folder path. If the folder is not available, PeekingDuck will create the folder
automatically. The filename is auto-generated by PeekingDuck based on the input source.

Run the above with the command peekingduck run. You will see the same video being played, but now it has the FPS
counter. When the video ends, an mp4 video file will be created and saved in the specified folder.

Note: You can view all the available nodes and their respective configurable settings in PeekingDuck’s
API documentation.

3.2.3 Configuration - Behind the Scenes

Here is an explanation on what goes on behind the scenes when you configure a node. Every node has a set of default
configuration. For instance, draw.bbox default configuration is:

1 input: ["bboxes", "img", "bbox_labels"]
2 output: ["none"]
3

4 show_labels: False

The keys input and output are compulsory and common across every node.
input specifies the data types the node would consume, to be read from the pipeline.
output specifies the data types the node would produce, to be put into the pipeline.

By default, show_labels is disabled. When you enable it with show_labels: True, what PeekingDuck does is
to override the default show_labels: False configuration with your specified True value. You will see another
instance of this at work in the advanced Peaking Duck tutorial on Tracking People Within a Zone.

3.2. Duck Confit 15

PeekingDuck, Release developer

3.2.4 Augmenting Images

PeekingDuck has a class of augment nodes that can be used to perform preprocessing or postprocessing of im-
ages/videos. Augment currently lets you modify the brightness and contrast, and remove distortion from a wide-
angle camera image. For more details on image undistortion, refer to the documentation on augment.undistort and
dabble.camera_calibration.

The pipeline_config.yml below shows how to use the augment.brightness node within the pipeline:

1 nodes:
2 - input.visual:
3 source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
4 - model.yolo
5 - augment.brightness:
6 beta: 50 # ranges from -100 (darken) to +100 (brighten)
7 - draw.bbox
8 - output.screen

The following figure shows the difference between the original vs the brightened image:

Fig. 5: Augment Brightness: Original vs Brightened Image

Note:

Royalty free video of cat and computer from: https://www.youtube.com/watch?v=-C1TEGZavko
Royalty free video of man waving hand from: https://www.youtube.com/watch?v=IKj_z2hgYUM

16 Chapter 3. Tutorials

https://www.youtube.com/watch?v=-C1TEGZavko
https://www.youtube.com/watch?v=IKj_z2hgYUM

PeekingDuck, Release developer

3.3 Custom Nodes

This tutorial will show you how to create your own custom nodes to run with PeekingDuck. Perhaps you’d like to take
a snapshot of a video frame, and post it to your API endpoint; or perhaps you have a model trained on a custom dataset,
and would like to use PeekingDuck’s input, draw, and output nodes. PeekingDuck is designed to be very flexible
— you can create your own nodes and use them with ours.

Let’s start by creating a new PeekingDuck project:

Terminal Session

[~user] > mkdir custom_project
[~user] > cd custom_project
[~user/custom_project] > peekingduck init

This creates the following custom_project folder structure:

custom_project/
pipeline_config.yml
src/

custom_nodes/
configs/

The sub-folders src, custom_nodes, and configs are empty: they serve as placeholders for contents to be added.

3.3.1 Recipe 1: Object Detection Score

When the YOLO object detection model detects an object in the image, it assigns a bounding box and a score to it. This
score is the “confidence score” which reflects how likely the box contains an object and how accurate is the bounding
box. It is a decimal number that ranges from 0.0 to 1.0 (or 100%). This number is internal and not readily viewable.

We will create a custom node to retrieve this score and display it on screen. This tutorial will use the
cat_and_computer.mp4 video from the earlier object detection tutorial. Copy it into the custom_project folder.

Use the following command to create a custom node: peekingduck create-node It will prompt you to answer several
questions. Press <Enter> to accept the default custom_nodes folder name, then key in draw for node type and score
for node name. Finally, press <Enter> to answer Y when asked to proceed.

The entire interaction is shown here, the answers you type in are shown in green text:

Terminal Session

[~user/custom_project] > peekingduck create-node
Creating new custom node. . .
Enter node directory relative to ~user/custom_project [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): draw
Enter node name [my_custom_node]: score

Node directory: ~user/custom_project/src/custom_nodes

3.3. Custom Nodes 17

https://storage.googleapis.com/peekingduck/videos/cat_and_computer.mp4

PeekingDuck, Release developer

Node type: draw
Node name: score

Creating the following files:
Config file: ~user/custom_project/src/custom_nodes/configs/draw/score.yml
Script file: ~user/custom_project/src/custom_nodes/draw/score.py

Proceed? [Y/n]:
Created node!

The custom_project folder structure should look like this:

custom_project/
cat_and_computer.mp4
pipeline_config.yml
src/

custom_nodes/
configs/

draw/
score.yml

draw/
score.py

custom_project now contains three files that we need to modify to implement our custom node function.

1. src/custom_nodes/configs/draw/score.yml:

score.yml initial content:

1 # Mandatory configs
2 # Receive bounding boxes and their respective labels as input. Replace with
3 # other data types as required. List of built-in data types for PeekingDuck can
4 # be found at https://peekingduck.readthedocs.io/en/stable/glossary.html.
5 input: ["bboxes", "bbox_labels"]
6 # Example:
7 # Output `obj_attrs` for visualization with `draw.tag` node and `custom_key` for
8 # use with other custom nodes. Replace as required.
9 output: ["obj_attrs", "custom_key"]

10

11 # Optional configs depending on node
12 threshold: 0.5 # example

The first file score.yml defines the properties of the custom node. Lines 5 and 9 show the mandatory configs
input and output.

input specifies the data types the node would consume, to be read from the pipeline. output specifies the data
types the node would produce, to be put into the pipeline.

To display the bounding box confidence score, our node requires three pieces of input data: the bounding box,
the score to display, and the image to draw on. These are defined as the data types bboxes, bbox_scores, and img
respectively in the API docs.

Our custom node only displays the score on screen and does not produce any outputs for the pipeline, so the
output is “none”.

There are also no optional configs, so lines 11 - 12 can be removed.

18 Chapter 3. Tutorials

PeekingDuck, Release developer

score.yml updated content:

1 # Mandatory configs
2 input: ["img", "bboxes", "bbox_scores"]
3 output: ["none"]
4

5 # No optional configs

Note: Comments in yaml files start with # It is possible for a node to have input: ["none"]

2. src/custom_nodes/draw/score.py:

The second file score.py contains the boilerplate code for creating a custom node. Update the code to implement
the desired behavior for the node.

Show/Hide Code for score.py

1 """
2 Custom node to show object detection scores
3 """
4

5 from typing import Any, Dict, List, Tuple
6 import cv2
7 from peekingduck.pipeline.nodes.abstract_node import AbstractNode
8

9 YELLOW = (0, 255, 255) # in BGR format, per opencv's convention
10

11

12 def map_bbox_to_image_coords(
13 bbox: List[float], image_size: Tuple[int, int]
14) -> List[int]:
15 """This is a helper function to map bounding box coords (relative) to
16 image coords (absolute).
17 Bounding box coords ranges from 0 to 1
18 where (0, 0) = image top-left, (1, 1) = image bottom-right.
19

20 Args:
21 bbox (List[float]): List of 4 floats x1, y1, x2, y2
22 image_size (Tuple[int, int]): Width, Height of image
23

24 Returns:
25 List[int]: x1, y1, x2, y2 in integer image coords
26 """
27 width, height = image_size[0], image_size[1]
28 x1, y1, x2, y2 = bbox
29 x1 *= width
30 x2 *= width
31 y1 *= height
32 y2 *= height
33 return int(x1), int(y1), int(x2), int(y2)
34

35

36 class Node(AbstractNode):
(continues on next page)

3.3. Custom Nodes 19

PeekingDuck, Release developer

(continued from previous page)

37 """This is a template class of how to write a node for PeekingDuck,
38 using AbstractNode as the parent class.
39 This node draws scores on objects detected.
40

41 Args:
42 config (:obj:`Dict[str, Any]` | :obj:`None`): Node configuration.
43 """
44

45 def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
46 """Node initializer
47

48 Since we do not require any special setup, it only calls the __init__
49 method of its parent class.
50 """
51 super().__init__(config, node_path=__name__, **kwargs)
52

53 def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
54 """This method implements the display score function.
55 As PeekingDuck iterates through the CV pipeline, this 'run' method
56 is called at each iteration.
57

58 Args:
59 inputs (dict): Dictionary with keys "img", "bboxes", "bbox_scores"
60

61 Returns:
62 outputs (dict): Empty dictionary
63 """
64

65 # extract pipeline inputs and compute image size in (width, height)
66 img = inputs["img"]
67 bboxes = inputs["bboxes"]
68 scores = inputs["bbox_scores"]
69 img_size = (img.shape[1], img.shape[0]) # width, height
70

71 for i, bbox in enumerate(bboxes):
72 # for each bounding box:
73 # - compute (x1, y1) top-left, (x2, y2) bottom-right coordinates
74 # - convert score into a two decimal place numeric string
75 # - draw score string onto image using opencv's putText()
76 # (see opencv's API docs for more info)
77 x1, y1, x2, y2 = map_bbox_to_image_coords(bbox, img_size)
78 score = scores[i]
79 score_str = f"{score:0.2f}"
80 cv2.putText(
81 img=img,
82 text=score_str,
83 org=(x1, y2),
84 fontFace=cv2.FONT_HERSHEY_SIMPLEX,
85 fontScale=1.0,
86 color=YELLOW,
87 thickness=3,
88)

(continues on next page)

20 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

89

90 return {} # node has no outputs

The updated node code defines a helper function map_bbox_to_image_coords to map the bounding box coor-
dinates to the image coordinates, as explained in this section.

The run method implements the main logic which processes every bounding box to compute its on-screen co-
ordinates and to draw the bounding box confidence score at its left-bottom position.

3. pipeline_config.yml:

pipeline_config.yml initial content:

1 nodes:
2 - input.visual:
3 source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
4 - model.posenet
5 - draw.poses
6 - output.screen

This file implements the pipeline. Modify the default pipeline to the one shown below:

pipeline_config.yml updated content:

1 nodes:
2 - input.visual:
3 source: cat_and_computer.mp4
4 - model.yolo:
5 detect: ["cup", "cat", "laptop", "keyboard", "mouse"]
6 - draw.bbox:
7 show_labels: True
8 - custom_nodes.draw.score
9 - output.screen

Line 8 adds our custom node into the pipeline where it will be run by PeekingDuck during each pipeline iteration.

Execute peekingduck run to see your custom node in action.

Note: Royalty free video of cat and computer from: https://www.youtube.com/watch?v=-C1TEGZavko

3.3.2 Recipe 2: Keypoints, Count Hand Waves

This tutorial will create a custom node to analyze the skeletal keypoints of the person from the wave.mp4 video in the
pose estimation tutorial and to count the number of times the person waves his hand.

The PoseNet pose estimation model outputs seventeen keypoints for the person corresponding to the different body
parts as documented here. Each keypoint is a pair of (x, y) coordinates, where x and y are real numbers ranging
from 0.0 to 1.0 (using relative coordinates).

Starting with a newly initialized PeekingDuck folder, call peekingduck create-node to create a new dabble.wave
custom node as shown below:

Terminal Session

3.3. Custom Nodes 21

https://www.youtube.com/watch?v=-C1TEGZavko
https://storage.googleapis.com/peekingduck/videos/wave.mp4

PeekingDuck, Release developer

Fig. 6: Custom Node Showing Object Detection Scores

[~user] > mkdir wave_project
[~user] > cd wave_project
[~user/wave_project] > peekingduck init
Welcome to PeekingDuck!
2022-02-11 18:17:31 peekingduck.cli INFO: Creating custom nodes folder in ~user/wave_project/src/custom_nodes
[~user/wave_project] > peekingduck create-node
Creating new custom node. . .
Enter node directory relative to ~user/wave_project [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): dabble
Enter node name [my_custom_node]: wave

Node directory: ~user/wave_project/src/custom_nodes
Node type: dabble
Node name: wave

Creating the following files:
Config file: ~user/wave_project/src/custom_nodes/configs/dabble/wave.yml
Script file: ~user/wave_project/src/custom_nodes/dabble/wave.py

Proceed? [Y/n]:
Created node!

Also, copy wave.mp4 into the above folder. You should end up with the following folder structure:

wave_project/
pipeline_config.yml
src/

22 Chapter 3. Tutorials

https://storage.googleapis.com/peekingduck/videos/wave.mp4

PeekingDuck, Release developer

custom_nodes/
configs/

dabble/
wave.yml

dabble/
wave.py

wave.mp4

To implement this tutorial, the three files wave.yml, wave.py and pipeline_config.yml are to be edited as follows:

1. src/custom_nodes/configs/dabble/wave.yml:

1 # Dabble node has both input and output
2 input: ["img", "bboxes", "bbox_scores", "keypoints", "keypoint_scores"]
3 output: ["none"]
4

5 # No optional configs

We will implement this tutorial using a custom dabble node, which will take the inputs img, bboxes, bbox_scores,
keypoints, and keypoint_scores from the pipeline. The node has no output.

2. src/custom_nodes/dabble/wave.py:

The dabble.wave code structure is similar to the draw.score code structure in the other custom node tutorial.

Show/Hide Code for wave.py

1 """
2 Custom node to show keypoints and count the number of times the person's hand is␣

→˓waved
3 """
4

5 from typing import Any, Dict, List, Tuple
6 import cv2
7 from peekingduck.pipeline.nodes.abstract_node import AbstractNode
8

9 # setup global constants
10 FONT = cv2.FONT_HERSHEY_SIMPLEX
11 WHITE = (255, 255, 255) # opencv loads file in BGR format
12 YELLOW = (0, 255, 255)
13 THRESHOLD = 0.6 # ignore keypoints below this threshold
14 KP_RIGHT_SHOULDER = 6 # PoseNet's skeletal keypoints
15 KP_RIGHT_WRIST = 10
16

17

18 def map_bbox_to_image_coords(
19 bbox: List[float], image_size: Tuple[int, int]
20) -> List[int]:
21 """First helper function to convert relative bounding box coordinates to
22 absolute image coordinates.
23 Bounding box coords ranges from 0 to 1
24 where (0, 0) = image top-left, (1, 1) = image bottom-right.
25

26 Args:
27 bbox (List[float]): List of 4 floats x1, y1, x2, y2
28 image_size (Tuple[int, int]): Width, Height of image

(continues on next page)

3.3. Custom Nodes 23

PeekingDuck, Release developer

(continued from previous page)

29

30 Returns:
31 List[int]: x1, y1, x2, y2 in integer image coords
32 """
33 width, height = image_size[0], image_size[1]
34 x1, y1, x2, y2 = bbox
35 x1 *= width
36 x2 *= width
37 y1 *= height
38 y2 *= height
39 return int(x1), int(y1), int(x2), int(y2)
40

41

42 def map_keypoint_to_image_coords(
43 keypoint: List[float], image_size: Tuple[int, int]
44) -> List[int]:
45 """Second helper function to convert relative keypoint coordinates to
46 absolute image coordinates.
47 Keypoint coords ranges from 0 to 1
48 where (0, 0) = image top-left, (1, 1) = image bottom-right.
49

50 Args:
51 bbox (List[float]): List of 2 floats x, y (relative)
52 image_size (Tuple[int, int]): Width, Height of image
53

54 Returns:
55 List[int]: x, y in integer image coords
56 """
57 width, height = image_size[0], image_size[1]
58 x, y = keypoint
59 x *= width
60 y *= height
61 return int(x), int(y)
62

63

64 def draw_text(img, x, y, text_str: str, color_code):
65 """Helper function to call opencv's drawing function,
66 to improve code readability in node's run() method.
67 """
68 cv2.putText(
69 img=img,
70 text=text_str,
71 org=(x, y),
72 fontFace=cv2.FONT_HERSHEY_SIMPLEX,
73 fontScale=0.4,
74 color=color_code,
75 thickness=2,
76)
77

78

79 class Node(AbstractNode):
80 """Custom node to display keypoints and count number of hand waves

(continues on next page)

24 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

81

82 Args:
83 config (:obj:`Dict[str, Any]` | :obj:`None`): Node configuration.
84 """
85

86 def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
87 super().__init__(config, node_path=__name__, **kwargs)
88 # setup object working variables
89 self.right_wrist = None
90 self.direction = None
91 self.num_direction_changes = 0
92 self.num_waves = 0
93

94 def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
95 """This node draws keypoints and count hand waves.
96

97 Args:
98 inputs (dict): Dictionary with keys
99 "img", "bboxes", "bbox_scores", "keypoints", "keypoint_scores".

100

101 Returns:
102 outputs (dict): Empty dictionary.
103 """
104

105 # get required inputs from pipeline
106 img = inputs["img"]
107 bboxes = inputs["bboxes"]
108 bbox_scores = inputs["bbox_scores"]
109 keypoints = inputs["keypoints"]
110 keypoint_scores = inputs["keypoint_scores"]
111

112 img_size = (img.shape[1], img.shape[0]) # image width, height
113

114 # get bounding box confidence score and draw it at the
115 # left-bottom (x1, y2) corner of the bounding box (offset by 30 pixels)
116 the_bbox = bboxes[0] # image only has one person
117 the_bbox_score = bbox_scores[0] # only one set of scores
118

119 x1, y1, x2, y2 = map_bbox_to_image_coords(the_bbox, img_size)
120 score_str = f"BBox {the_bbox_score:0.2f}"
121 cv2.putText(
122 img=img,
123 text=score_str,
124 org=(x1, y2 - 30), # offset by 30 pixels
125 fontFace=cv2.FONT_HERSHEY_SIMPLEX,
126 fontScale=1.0,
127 color=WHITE,
128 thickness=3,
129)
130

131 # hand wave detection using a simple heuristic of tracking the
132 # right wrist movement

(continues on next page)

3.3. Custom Nodes 25

PeekingDuck, Release developer

(continued from previous page)

133 the_keypoints = keypoints[0] # image only has one person
134 the_keypoint_scores = keypoint_scores[0] # only one set of scores
135 right_wrist = None
136 right_shoulder = None
137

138 for i, keypoints in enumerate(the_keypoints):
139 keypoint_score = the_keypoint_scores[i]
140

141 if keypoint_score >= THRESHOLD:
142 x, y = map_keypoint_to_image_coords(keypoints.tolist(), img_size)
143 x_y_str = f"({x}, {y})"
144

145 if i == KP_RIGHT_SHOULDER:
146 right_shoulder = keypoints
147 the_color = YELLOW
148 elif i == KP_RIGHT_WRIST:
149 right_wrist = keypoints
150 the_color = YELLOW
151 else: # generic keypoint
152 the_color = WHITE
153

154 draw_text(img, x, y, x_y_str, the_color)
155

156 if right_wrist is not None and right_shoulder is not None:
157 # only count number of hand waves after we have gotten the
158 # skeletal poses for the right wrist and right shoulder
159 if self.right_wrist is None:
160 self.right_wrist = right_wrist # first wrist data point
161 else:
162 # wait for wrist to be above shoulder to count hand wave
163 if right_wrist[1] > right_shoulder[1]:
164 pass
165 else:
166 if right_wrist[0] < self.right_wrist[0]:
167 direction = "left"
168 else:
169 direction = "right"
170

171 if self.direction is None:
172 self.direction = direction # first direction data point
173 else:
174 # check if hand changes direction
175 if direction != self.direction:
176 self.num_direction_changes += 1
177 # every two hand direction changes == one wave
178 if self.num_direction_changes >= 2:
179 self.num_waves += 1
180 self.num_direction_changes = 0 # reset direction count
181

182 self.right_wrist = right_wrist # save last position
183 self.direction = direction
184

(continues on next page)

26 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

185 wave_str = f"#waves = {self.num_waves}"
186 draw_text(img, 20, 30, wave_str, YELLOW)
187

188 return {}

This (long) piece of code implements our custom dabble node. It defines three helper functions to convert
relative to absolute coordinates and to draw text on-screen. The number of hand waves is displayed at the top-left
corner of the screen.

A simple heuristic is used to count the number of times the person waves his hand. It tracks the direction in
which the right wrist is moving and notes when the wrist changes direction. Upon encountering two direction
changes, e.g., left -> right -> left, one wave is counted.

The heuristic also waits until the right wrist has been lifted above the right shoulder before it starts tracking hand
direction and counting waves.

3. pipeline_config.yml:

1 nodes:
2 - input.visual:
3 source: wave.mp4
4 - model.yolo
5 - model.posenet
6 - dabble.fps
7 - custom_nodes.dabble.wave
8 - draw.poses
9 - draw.legend:

10 show: ["fps"]
11 - output.screen

We modify pipeline_config.yml to run both the object detection and pose estimation models to obtain the
required inputs for our custom dabble node.

Execute peekingduck run to see your custom node in action.

Note: Royalty free video of man waving from: https://www.youtube.com/watch?v=IKj_z2hgYUM

3.3.3 Recipe 3: Debugging

When working with PeekingDuck’s pipeline, you may sometimes wonder what is available in the data pool, or whether
a particular data object has been correctly computed. This tutorial will show you how to use a custom node to help
with troubleshooting and debugging PeekingDuck’s pipeline.

Continuing from the above tutorial, create a new dabble.debug custom node:

Terminal Session

[~user/wave_project] > peekingduck create-node
Creating new custom node. . .
Enter node directory relative to ~user/wave_project [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): dabble

3.3. Custom Nodes 27

https://www.youtube.com/watch?v=IKj_z2hgYUM

PeekingDuck, Release developer

Fig. 7: Custom Node Counting Hand Waves

Enter node name [my_custom_node]: debug

Node directory: ~user/wave_project/src/custom_nodes
Node type: dabble
Node name: debug

Creating the following files:
Config file: ~user/wave_project/src/custom_nodes/configs/dabble/debug.yml
Script file: ~user/wave_project/src/custom_nodes/dabble/debug.py

Proceed? [Y/n]:
Created node!

The updated folder structure is:

wave_project/
pipeline_config.yml
src

custom_nodes
configs

dabble
debug.yml
wave.yml

dabble
debug.py
wave.py

wave.mp4

Make the following three changes:

28 Chapter 3. Tutorials

PeekingDuck, Release developer

1. Define debug.yml to receive “all” inputs from the pipeline, as follows:

1 # Mandatory configs
2 input: ["all"]
3 output: ["none"]
4

5 # No optional configs

2. Update debug.py as shown below:

Show/Hide Code for debug.py

1 """
2 A custom node for debugging
3 """
4

5 from typing import Any, Dict
6

7 from peekingduck.pipeline.nodes.abstract_node import AbstractNode
8

9

10 class Node(AbstractNode):
11 """This is a simple example of creating a custom node to help with debugging.
12

13 Args:
14 config (:obj:`Dict[str, Any]` | :obj:`None`): Node configuration.
15 """
16

17 def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
18 super().__init__(config, node_path=__name__, **kwargs)
19

20 def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
21 """A simple debugging custom node
22

23 Args:
24 inputs (dict): "all", to view everything in data pool
25

26 Returns:
27 outputs (dict): "none"
28 """
29

30 self.logger.info("-- debug --")
31 # show what is available in PeekingDuck's data pool
32 self.logger.info(f"input.keys={list(inputs.keys())}")
33 # debug specific data: bboxes
34 bboxes = inputs["bboxes"]
35 bbox_labels = inputs["bbox_labels"]
36 bbox_scores = inputs["bbox_scores"]
37 self.logger.info(f"num bboxes={len(bboxes)}")
38 for i, bbox in enumerate(bboxes):
39 label, score = bbox_labels[i], bbox_scores[i]
40 self.logger.info(f"bbox {i}:")
41 self.logger.info(f" label={label}, score={score:0.2f}")
42 self.logger.info(f" coords={bbox}")

(continues on next page)

3.3. Custom Nodes 29

PeekingDuck, Release developer

(continued from previous page)

43

44 return {} # no outputs

The custom node code shows how to see what is available in PeekingDuck’s pipeline data pool by printing the
input dictionary keys. It also demonstrates how to debug a specific data object, such as bboxes, by printing
relevant information for each item within the data.

3. Update pipeline_config.yml:

1 nodes:
2 - input.visual:
3 source: wave.mp4
4 - model.yolo
5 - model.posenet
6 - dabble.fps
7 - custom_nodes.dabble.wave
8 - custom_nodes.dabble.debug
9 - draw.poses

10 - draw.legend:
11 show: ["fps"]
12 - output.screen

Now, do a peekingduck run and you should see a sample debug output like the one below:

Terminal Session

[~user/wave_project] > peekingduck run
2022-03-02 18:42:51 peekingduck.declarative_loader INFO: Successfully loaded pipeline_config file.
2022-03-02 18:42:51 peekingduck.declarative_loader INFO: Initializing input.visual node...
2022-03-02 18:42:51 peekingduck.declarative_loader INFO: Config for node input.visual is updated to: ‘source’:
wave.mp4
2022-03-02 18:42:51 peekingduck.pipeline.nodes.input.visual INFO: Video/Image size: 710 by 540
2022-03-02 18:42:51 peekingduck.pipeline.nodes.input.visual INFO: Filepath used: wave.mp4
2022-03-02 18:42:51 peekingduck.declarative_loader INFO: Initializing model.yolo node...

[... many lines of output deleted here ...]
2022-03-02 18:42:53 peekingduck.declarative_loader INFO: Initializing custom_nodes.dabble.debug node...
2022-03-02 18:42:53 peekingduck.declarative_loader INFO: Initializing draw.poses node...
2022-03-02 18:42:53 peekingduck.declarative_loader INFO: Initializing draw.legend node...
2022-03-02 18:42:53 peekingduck.declarative_loader INFO: Initializing output.screen node...
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: – debug –
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: input.keys=[‘img’, ‘pipeline_end’, ‘filename’,
‘saved_video_fps’, ‘bboxes’, ‘bbox_labels’, ‘bbox_scores’, ‘keypoints’, ‘keypoint_scores’, ‘keypoint_conns’,
‘hand_direction’, ‘num_waves’, ‘fps’]
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: num bboxes=1
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: bbox 0:
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: label=Person, score=0.91
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: coords=[0.40047657 0.21553655 0.85199741
1.02150181]

30 Chapter 3. Tutorials

PeekingDuck, Release developer

3.3.4 Other Recipes to Create Custom Nodes

This section describes two faster ways to create custom nodes for users who are familiar with PeekingDuck.

CLI Recipe

You can skip the step-by-step prompts from peekingduck create-node by specifying all the options on the command
line, for instance:

Terminal Session

[~user/wave_project] > peekingduck create-node --node_subdir src/custom_nodes --node_type dabble --node_name
wave

The above is the equivalent of the tutorial Recipe 1: Object Detection Score custom node creation. For more informa-
tion, see peekingduck create-node --help.

Pipeline Recipe

PeekingDuck can also create custom nodes by parsing your pipeline configuration file. Starting with the basic folder
structure from peekingduck init:

wave_project/
pipeline_config.yml
src

custom_nodes
configs

wave.mp4

and the following modified pipeline_config.yml file:

1 nodes:
2 - input.visual:
3 source: wave.mp4
4 - model.yolo
5 - model.posenet
6 - dabble.fps
7 - custom_nodes.dabble.wave
8 - custom_nodes.dabble.debug
9 - draw.poses

10 - draw.legend:
11 show: ["fps"]
12 - output.screen

You can tell PeekingDuck to parse your pipeline file with peekingduck create-node --config_path pipeline_config.yml:

Terminal Session

3.3. Custom Nodes 31

PeekingDuck, Release developer

[~user/wave_project] > peekingduck create-node --config_path pipeline_config.yml
2022-03-14 11:21:21 peekingduck.cli INFO: Creating custom nodes declared in
~user/wave_project/pipeline_config.yml.
2022-03-14 11:21:21 peekingduck.declarative_loader INFO: Successfully loaded pipeline file.
2022-03-14 11:21:21 peekingduck.cli INFO: Creating files for custom_nodes.dabble.wave:

Config file: ~user/wave_project/src/custom_nodes/configs/dabble/wave.yml
Script file: ~user/wave_project/src/custom_nodes/dabble/wave.py

2022-03-14 11:21:21 peekingduck.cli INFO: Creating files for custom_nodes.dabble.debug:
Config file: ~user/wave_project/src/custom_nodes/configs/dabble/debug.yml
Script file: ~user/wave_project/src/custom_nodes/dabble/debug.py

PeekingDuck will read pipeline_config.yml and create the two specified custom nodes custom_nodes.dabble.
wave and custom_nodes.dabble.debug. Your folder structure will now look like this:

wave_project/
pipeline_config.yml
src

custom_nodes
configs

dabble
debug.yml
wave.yml

dabble
debug.py
wave.py

wave.mp4

From here, you can proceed to edit the custom node configs and source files.

3.4 Peaking Duck

PeekingDuck includes some “power” nodes that are capable of processing the contents or outputs of the other nodes and
to accumulate information over time. An example is the dabble.statistics node which can accumulate statistical
information, such as calculating the cumulative average and maximum of particular objects (like people or cars). This
tutorial presents advanced recipes to showcase the power features of PeekingDuck, such as using dabble.statistics
for object counting and tracking.

3.4.1 Interfacing with SQL

This tutorial demonstrates how to save data to an SQLite database. We will extend the tutorial for counting hand waves
with a new custom output node that writes information into a local SQLite database.

Note: The above tutorial assumes sqlite3 has been installed in your system. If your system does not
have sqlite3, please see the SQLite Home Page for installation instructions.

First, create a new custom output.sqlite node in the custom_project folder:

Terminal Session

32 Chapter 3. Tutorials

http://www.sqlite.org/

PeekingDuck, Release developer

[~user/wave_project] > peekingduck create-node
Creating new custom node. . .
Enter node directory relative to ~user/wave_project [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): output
Enter node name [my_custom_node]: sqlite

Node directory: ~user/wave_project/src/custom_nodes
Node type: output
Node name: sqlite

Creating the following files:
Config file: ~user/wave_project/src/custom_nodes/configs/output/sqlite.yml
Script file: ~user/wave_project/src/custom_nodes/output/sqlite.py

Proceed? [Y/n]:
Created node!

The updated folder structure would be:

wave_project/
pipeline_config.yml
src/

custom_nodes/
configs/

dabble/
wave.yml

output/
sqlite.yml

dabble/
wave.py

output/
sqlite.py

wave.mp4

Edit the following five files as described below:

1. src/custom_nodes/configs/output/sqlite.yml:

1 # Mandatory configs
2 input: ["hand_direction", "num_waves"]
3 output: ["none"]
4

5 # No optional configs

The new output.sqlite custom node will take in the hand direction and the current number of hand waves to
save to the external database.

2. src/custom_nodes/output/sqlite.py:

Show/Hide Code for sqlite.py

1 """
2 Custom node to save data to external database.

(continues on next page)

3.4. Peaking Duck 33

PeekingDuck, Release developer

(continued from previous page)

3 """
4

5 from typing import Any, Dict
6 from datetime import datetime
7 from peekingduck.pipeline.nodes.abstract_node import AbstractNode
8 import sqlite3
9

10 DB_FILE = "wave.db" # name of database file
11

12

13 class Node(AbstractNode):
14 """Custom node to save hand direction and current wave count to database.
15

16 Args:
17 config (:obj:`Dict[str, Any]` | :obj:`None`): Node configuration.
18 """
19

20 def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
21 super().__init__(config, node_path=__name__, **kwargs)
22

23 self.conn = None
24 try:
25 # try to establish connection to database,
26 # will create DB_FILE if it does not exist
27 self.conn = sqlite3.connect(DB_FILE)
28 self.logger.info(f"Connected to {DB_FILE}")
29 sql = """ CREATE TABLE IF NOT EXISTS wavetable (
30 datetime text,
31 hand_direction text,
32 wave_count integer
33); """
34 cur = self.conn.cursor()
35 cur.execute(sql)
36 except sqlite3.Error as e:
37 self.logger.info(f"SQL Error: {e}")
38

39 def update_db(self, hand_direction: str, num_waves: int) -> None:
40 """Helper function to save current time stamp, hand direction and
41 wave count into DB wavetable.
42 """
43 now = datetime.now()
44 dt_str = f"{now:%Y-%m-%d %H:%M:%S}"
45 sql = """ INSERT INTO wavetable(datetime,hand_direction,wave_count)
46 values (?,?,?) """
47 cur = self.conn.cursor()
48 cur.execute(sql, (dt_str, hand_direction, num_waves))
49 self.conn.commit()
50

51 def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
52 """Node to output hand wave data into sqlite database.
53

54 Args:

(continues on next page)

34 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

55 inputs (dict): Dictionary with keys "hand_direction", "num_waves"
56

57 Returns:
58 outputs (dict): Empty dictionary
59 """
60

61 hand_direction = inputs["hand_direction"]
62 num_waves = inputs["num_waves"]
63 self.update_db(hand_direction, num_waves)
64

65 return {}

This tutorial uses the sqlite3 package to interface with the database.

On first run, the node initializer will create the wave.db database file. It will establish a connection to the
database and create a table called wavetable if it does not exist. This table is used to store the hand direction
and wave count data.

A helper function update_db is called to update the database. It saves the current date time stamp, hand direction
and wave count into the wavetable.

The node’s run method retrieves the required inputs from the pipeline’s data pool and calls self.update_db
to save the data.

3. src/custom_nodes/configs/dabble/wave.yml:

1 # Dabble node has both input and output
2 input: ["img", "bboxes", "bbox_scores", "keypoints", "keypoint_scores"]
3 output: ["hand_direction", "num_waves"]
4

5 # No optional configs

To support the output.sqlite custom node’s input requirements, we need to modify the dabble.wave custom
node to return the current hand direction hand_direction and the current wave count num_waves.

4. src/custom_nodes/dabble/wave.py:

173 ... same as previous ...
174 return {
175 "hand_direction": self.direction if self.direction is not None else "None",
176 "num_waves": self.num_waves,
177 }

This file is the same as the wave.py in the counting hand waves tutorial, except for the changes in the last few
lines as shown above. These changes outputs the hand_direction and num_waves to the pipeline’s data pool
for subsequent consumption by the output.sqlite custom node.

5. pipeline_config.yml:

11 ... same as previous ...
12 - custom_nodes.output.sqlite

Likewise, the pipeline is the same as in the previous tutorial, except for line 12 that has been added to call the
new custom node.

Run this project with peekingduck run and when completed, a new wave.db sqlite database file would be created in
the current folder. Examine the created database as follows:

3.4. Peaking Duck 35

PeekingDuck, Release developer

Terminal Session

[~user/wave_project] > sqlite3
SQLite version 3.37.0 2021-11-27 14:13:22
Enter “.help” for usage hints.
Connected to a transient in-memory database.
Use “.open FILENAME” to reopen on a persistent database.
sqlite> .open wave.db
sqlite> .schema wavetable
CREATE TABLE wavetable (

datetime text,
hand_direction text,
wave_count integer

);
sqlite> select * from wavetable where wave_count > 0 limit 5;
2022-02-15 19:26:16|left|1
2022-02-15 19:26:16|right|1
2022-02-15 19:26:16|left|2
2022-02-15 19:26:16|right|2
2022-02-15 19:26:16|right|2
sqlite> select * from wavetable order by datetime desc limit 5;
2022-02-15 19:26:44|right|72
2022-02-15 19:26:44|right|72
2022-02-15 19:26:44|right|72
2022-02-15 19:26:44|right|72
2022-02-15 19:26:43|right|70

Press CTRL-D to exit from sqlite3.

3.4.2 Counting Cars

This tutorial demonstrates using the dabble.statistics node to count the number of cars traveling across a highway
over time and the draw.legend node to display the relevant statistics.

Create a new PeekingDuck project, download the highway cars video and save it into the project folder.

Terminal Session

[~user] > mkdir car_project
[~user] > cd car_project
[~user/car_project] > peekingduck init

36 Chapter 3. Tutorials

https://storage.googleapis.com/peekingduck/videos/highway_cars.mp4

PeekingDuck, Release developer

The car_project folder structure:

car_project/
highway_cars.mp4
pipeline_config.yml
src

custom_nodes
configs

Edit pipeline_config.yml as follows:

1 nodes:
2 - input.visual:
3 source: highway_cars.mp4
4 - model.yolo:
5 detect: ["car"]
6 score_threshold: 0.3
7 - dabble.bbox_count
8 - dabble.fps
9 - dabble.statistics:

10 identity: count
11 - draw.bbox
12 - draw.legend:
13 show: ["fps", "count", "cum_max", "cum_min"]
14 - output.screen

Run it with peekingduck run and you should see a video of cars travelling across a highway with a legend box on
the bottom left showing the realtime count of the number of cars on-screen, the cumulative maximum and minimum
number of cars detected since the video started. The sample screenshot below shows:

• the count that there are currently 3 cars on-screen

• the cumulative maximum number of cars “seen” previously was 5

• the cumulative minimum number of cars was 1

Fig. 8: Counting Cars on a Highway

3.4. Peaking Duck 37

PeekingDuck, Release developer

Note: Royalty free video of cars on highway from: https://www.youtube.com/watch?v=8yP1gjg4b2w

3.4.3 Object Tracking

Object tracking is the application of CV models to automatically detect objects in a video and to assign a unique identity
to each of them. These objects can be either living (e.g. person) or non-living (e.g. car). As they move around in the
video, these objects are identified based on their assigned identities and tracked according to their movements.

This tutorial demonstrates using dabble.statistics with a custom node to track the number of people walking
down a path.

Create a new PeekingDuck project, download the people walking video and save it into the project folder.

Terminal Session

[~user] > mkdir people_walking
[~user] > cd people_walking
[~user/people_walking] > peekingduck init

Create the following pipeline_config.yml:

1 nodes:
2 - input.visual:
3 source: people_walking.mp4
4 - model.yolo:
5 detect: ["person"]
6 - dabble.tracking
7 - dabble.statistics:
8 maximum: obj_attrs["ids"]
9 - dabble.fps

10 - draw.bbox
11 - draw.tag:
12 show: ["ids"]
13 - draw.legend:
14 show: ["fps", "cum_max", "cum_min", "cum_avg"]
15 - output.screen

The above pipeline uses the YOLO model to detect people in the video and uses the dabble.tracking node to track
the people as they walk. Each person is assigned a tracking ID and dabble.tracking returns a list of tracking IDs.
dabble.statistics is used to process these tracking IDs: since each person is assigned a monotonically increasing
integer ID, the maximum ID within the list tells us the number of persons tracked so far. draw.tag shows the ID above
the tracked person. draw.legend is used to display the various statistics: the FPS, and the cumulative maximum,
minimum and average relating to the number of persons tracked.

Do a peekingduck run and you will see the following display:

Note: Royalty free video of people walking from: https://www.youtube.com/watch?v=du74nvmRUzo

38 Chapter 3. Tutorials

https://www.youtube.com/watch?v=8yP1gjg4b2w
https://storage.googleapis.com/peekingduck/videos/people_walking.mp4
https://www.youtube.com/watch?v=du74nvmRUzo

PeekingDuck, Release developer

Fig. 9: People Walking

Tracking People within a Zone

Suppose we are only interested in people walking down the center of the video (imagine a carpet running down the
middle). We can create a custom node to tell PeekingDuck to focus on the middle zone, by filtering away the detected
bounding boxes outside the zone.

Start by creating a custom node dabble.filter_bbox:

Terminal Session

[~user/people_walking] > peekingduck create-node
Creating new custom node. . .
Enter node directory relative to ~user/people_walking [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): dabble
Enter node name [my_custom_node]: filter_bbox

Node directory: ~user/people_walking/src/custom_nodes
Node type: dabble
Node name: filter_bbox

Creating the following files:
Config file: ~user/people_walking/src/custom_nodes/configs/dabble/filter_bbox.yml
Script file: ~user/people_walking/src/custom_nodes/dabble/filter_bbox.py

Proceed? [Y/n]:
Created node!

The folder structure looks like this:

3.4. Peaking Duck 39

PeekingDuck, Release developer

people_walking/
people_walking.mp4
pipeline_config.yml
src

custom_nodes
configs

dabble
filter_bbox.yml

dabble
filter_bbox.py

Change pipeline_config.yml to the following:

1 nodes:
2 - input.visual:
3 source: people_walking.mp4
4 - model.yolo:
5 detect: ["person"]
6 - dabble.bbox_to_btm_midpoint
7 - dabble.zone_count:
8 resolution: [720, 480]
9 zones: [

10 [[0.35,0], [0.65,0], [0.65,1], [0.35,1]],
11]
12 - custom_nodes.dabble.filter_bbox:
13 zones: [
14 [[0.35,0], [0.65,0], [0.65,1], [0.35,1]],
15]
16 - dabble.tracking
17 - dabble.statistics:
18 maximum: obj_attrs["ids"]
19 - dabble.fps
20 - draw.bbox
21 - draw.zones
22 - draw.tag:
23 show: ["ids"]
24 - draw.legend:
25 show: ["fps", "cum_max", "cum_min", "cum_avg", "zone_count"]
26 - output.screen

We make use of dabble.zone_count and dabble.bbox_to_btm_midpoint nodes to create a zone in the middle.
The zone is defined by a rectangle with the four corners (0.35, 0.0) - (0.65, 0.0) - (0.65, 1.0) - (0.35, 1.0). (For more info,
see Zone Counting) This zone is also defined in our custom node dabble.filter_bbox for bounding box filtering.
What dabble.filter_bbox will do is to take the list of bboxes as input and output a list of bboxes within the zone,
dropping all bboxes outside it. Then, dabble.tracking is used to track the people walking and dabble.statistics
is used to determine the number of people walking in the zone, by getting the maximum of the tracked IDs. draw.
legend has a new item zone_count which displays the number of people walking in the zone currently.

The filter_bbox.yml and filter_bbox.py files are shown below:

1. src/custom_nodes/configs/dabble/filter_bbox.yml:

1 # Mandatory configs
2 input: ["bboxes"]
3 output: ["bboxes"]

(continues on next page)

40 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

4

5 zones: [
6 [[0,0], [0,1], [1,1], [1,0]],
7]

Note: The zones default value of [[0,0], [0,1], [1,1], [1,0]] will be overridden by those specified
in pipeline_config.yml above. See Configuration - Behind The Scenes for more details.

2. src/custom_nodes/dabble/filter_bbox.py:

Show/Hide Code for filter_bbox.py

1 """
2 Custom node to filter bboxes outside a zone
3 """
4

5 from typing import Any, Dict
6 import numpy as np
7 from peekingduck.pipeline.nodes.abstract_node import AbstractNode
8

9

10 class Node(AbstractNode):
11 """Custom node to filter bboxes outside a zone
12

13 Args:
14 config (:obj:`Dict[str, Any]` | :obj:`None`): Node configuration.
15 """
16

17 def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
18 super().__init__(config, node_path=__name__, **kwargs)
19

20 def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
21 """Checks bounding box x-coordinates against the zone left and right borders.
22 Retain bounding box if within, otherwise discard it.
23

24 Args:
25 inputs (dict): Dictionary with keys "bboxes"
26

27 Returns:
28 outputs (dict): Dictionary with keys "bboxes".
29 """
30 bboxes = inputs["bboxes"]
31 zones = self.config["zones"]
32 zone = zones[0] # only work with one zone currently
33 # convert zone with 4 points to a zone bbox with (x1, y1), (x2, y2)
34 x1, y1 = zone[0]
35 x2, y2 = zone[2]
36 zone_bbox = np.asarray([x1, y1, x2, y2])
37

38 retained_bboxes = []
39 for bbox in bboxes:

(continues on next page)

3.4. Peaking Duck 41

PeekingDuck, Release developer

(continued from previous page)

40 # filter by left and right borders (ignore top and bottom)
41 if bbox[0] > zone_bbox[0] and bbox[2] < zone_bbox[2]:
42 retained_bboxes.append(bbox)
43

44 return {"bboxes": np.asarray(retained_bboxes)}

Do a peekingduck run and you will see the following display:

Fig. 10: Count People Walking in a Zone

3.5 Calling PeekingDuck in Python

3.5.1 Using PeekingDuck’s Pipeline

As an alternative to running PeekingDuck using the command-line interface (CLI), users can also import PeekingDuck
as a Python module and run it in a Python script. This demo corresponds to the Record Video File with FPS Section
of the Duck Confit tutorial.

In addition, we will demonstrate basic debugging techniques which users can employ when troubleshooting Peeking-
Duck projects.

42 Chapter 3. Tutorials

PeekingDuck, Release developer

Setting Up

Create a PeekingDuck project using:

Terminal Session

[~user] > mkdir pkd_project
[~user] > cd pkd_project
[~user/pkd_project] > peekingduck init

Then, download the cat and computer video to the pkd_project folder and create a Python script demo_debug.py
in the same folder.

You should have the following directory structure at this point:

pkd_project/
cat_and_computer.mp4
demo_debug.py
pipeline_config.yml
src/

Creating a Custom Node for Debugging

Run the following to create a dabble node for debugging:

Terminal Session

[~user/pkd_project] > peekingduck create-node --node_subdir src/custom_nodes --node_type dabble --node_name
debug

The command will create the debug.py and debug.yml files in your project directory as shown:

pkd_project/
cat_and_computer.mp4
demo_debug.py
pipeline_config.yml
src/

custom_nodes/
configs/

dabble/
debug.yml

dabble/
debug.py

Change the content of debug.yml to:

1 input: ["all"]
2 output: ["none"]

3.5. Calling PeekingDuck in Python 43

https://storage.googleapis.com/peekingduck/videos/cat_and_computer.mp4

PeekingDuck, Release developer

Line 1: The data type all allows the node to receive all outputs from the previous nodes as its input. Please see the
Glossary for a list of available data types.

Change the content of debug.py to:

Show/Hide Code

1 from typing import Any, Dict
2

3 import numpy as np
4

5 from peekingduck.pipeline.nodes.abstract_node import AbstractNode
6

7

8 class Node(AbstractNode):
9 def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:

10 super().__init__(config, node_path=__name__, **kwargs)
11 self.frame = 0
12

13 def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
14 if "cat" in inputs["bbox_labels"]:
15 print(
16 f"{self.frame} {inputs['bbox_scores'][np.where(inputs['bbox_labels'] ==

→˓'cat')]}"
17)
18 self.frame += 1
19 return {}

Lines 14 - 17: Print out the frame number and the confidence scores of bounding boxes which are detected as “cat”.

Line 18: Increment the frame number each time run() is called.

Creating the Python Script

Copy over the following code to demo_debug.py:

Show/Hide Code

1 from pathlib import Path
2

3 from peekingduck.pipeline.nodes.dabble import fps
4 from peekingduck.pipeline.nodes.draw import bbox, legend
5 from peekingduck.pipeline.nodes.input import visual
6 from peekingduck.pipeline.nodes.model import yolo
7 from peekingduck.pipeline.nodes.output import media_writer, screen
8 from peekingduck.runner import Runner
9 from src.custom_nodes.dabble import debug

10

11

12 def main():
13 debug_node = debug.Node(pkd_base_dir=Path.cwd() / "src" / "custom_nodes")
14

15 visual_node = visual.Node(source=str(Path.cwd() / "cat_and_computer.mp4"))
16 yolo_node = yolo.Node(detect=["cup", "cat", "laptop", "keyboard", "mouse"])
17 bbox_node = bbox.Node(show_labels=True)

(continues on next page)

44 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

18

19 fps_node = fps.Node()
20 legend_node = legend.Node(show=["fps"])
21 screen_node = screen.Node()
22

23 media_writer_node = media_writer.Node(output_dir=str(Path.cwd() / "results"))
24

25 runner = Runner(
26 nodes=[
27 visual_node,
28 yolo_node,
29 debug_node,
30 bbox_node,
31 fps_node,
32 legend_node,
33 screen_node,
34 media_writer_node,
35]
36)
37 runner.run()
38

39

40 if __name__ == "__main__":
41 main()

Lines 9, 13: Import and initialize the debug custom node. Pass in the path/to/project_dir/src/custom_nodes
via pkd_base_dir for the configuration YAML file of the custom node to be loaded properly.

Lines 15 - 23: Create the PeekingDuck nodes necessary to replicate the demo shown in the Record Video File with
FPS tutorial. To change the node configuration, you can pass the new values to the Node() constructor as keyword
arguments.

Lines 25 - 37: Initialize the PeekingDuck Runner from runner.py with the list of nodes passed in via the nodes
argument.

Note: A PeekingDuck node can be created in Python code by passing a dictionary of config keyword - config value
pairs to the Node() constructor.

Running the Python Script

Run the demo_debug.py script using:

Terminal Session

[~user/pkd_project] > python demo_debug.py

You should see the following output in your terminal:

3.5. Calling PeekingDuck in Python 45

https://github.com/aisingapore/PeekingDuck/blob/main/peekingduck/runner.py

PeekingDuck, Release developer

1 2022-02-24 16:33:06 peekingduck.pipeline.nodes.input.visual INFO: Config for node␣
→˓input.visual is updated to: 'source': ~user/pkd_project/cat_and_computer.mp4

2 2022-02-24 16:33:06 peekingduck.pipeline.nodes.input.visual INFO: Video/Image size:␣
→˓720 by 480

3 2022-02-24 16:33:06 peekingduck.pipeline.nodes.input.visual INFO: Filepath used: ~user/
→˓pkd_project/cat_and_computer.mp4

4 2022-02-24 16:33:06 peekingduck.pipeline.nodes.model.yolo INFO: Config for node model.
→˓yolo is updated to: 'detect': [41, 15, 63, 66, 64]

5 2022-02-24 16:33:06 peekingduck.pipeline.nodes.model.yolov4.yolo_files.detector INFO: ␣
→˓Yolo model loaded with following configs:

6 Model type: v4tiny,
7 Input resolution: 416,
8 IDs being detected: [41, 15, 63, 66, 64]
9 Max Detections per class: 50,

10 Max Total Detections: 50,
11 IOU threshold: 0.5,
12 Score threshold: 0.2
13 2022-02-24 16:33:07 peekingduck.pipeline.nodes.draw.bbox INFO: Config for node draw.

→˓bbox is updated to: 'show_labels': True
14 2022-02-24 16:33:07 peekingduck.pipeline.nodes.dabble.fps INFO: Moving average of FPS␣

→˓will be logged every: 100 frames
15 2022-02-24 16:33:07 peekingduck.pipeline.nodes.output.media_writer INFO: Config for␣

→˓node output.media_writer is updated to: 'output_dir': ~user/pkd_project/results
16 2022-02-24 16:33:07 peekingduck.pipeline.nodes.output.media_writer INFO: Output␣

→˓directory used is: ~user/pkd_project/results
17 0 [0.90861976]
18 1 [0.9082737]
19 2 [0.90818006]
20 3 [0.8888804]
21 4 [0.8877487]
22 5 [0.9071386]
23 6 [0.870267]
24

25 [Truncated]

Lines 17 - 23: The debugging output showing the frame number and the confidence score of bounding boxes predicted
as “cat”.

3.5.2 Integrating with Your Workflow

The modular design of PeekingDuck allows users to pick and choose the nodes they want to use. Users are also able to
use PeekingDuck nodes with external packages when designing their pipeline.

In this demo, we will show how users can construct a custom PeekingDuck pipeline using:

• Data loaders such as tf.keras.preprocessing.image_dataset_from_directory (available in tensorflow>=2.3.0),

• External packages (not implemented as PeekingDuck nodes) such as easyocr, and

• Visualization packages such as matplotlib.

The notebook corresponding to this tutorial, calling_peekingduck_in_python.ipynb, can be found in the note-
books folder of the PeekingDuck repository and is also available as a Colab notebook.

Show/Hide Instructions for Linux/Mac (Intel)/Windows

46 Chapter 3. Tutorials

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory
https://pypi.org/project/easyocr/
https://pypi.org/project/matplotlib/
https://github.com/aisingapore/PeekingDuck/tree/main/notebooks
https://github.com/aisingapore/PeekingDuck/tree/main/notebooks
https://colab.research.google.com/drive/1NwQKrnY_3ia2mBEaUinkvUqbrjjT3ssq#scrollTo=l2MCyh5Hgp5O

PeekingDuck, Release developer

Note: The uninstallation step is necessary to ensure that the proper version of OpenCV is installed.

You may receive an error message about the incompatibility between awscli and colorama==0.4.4. awscli is
conservative about pinning versions to maintain backward compatibility. The code presented in this tutorial has been
tested to work and we have chosen to prioritize PeekingDuck’s dependency requirements.

Show/Hide Instructions for Mac (Apple Silicon)

Note: We install the problematic packages easyocr and oidv6 first and then uninstall the pip-related OpenCV
packages which were installed as dependencies. Mac (Apple silicon) needs conda’s OpenCV.

There will be a warning that easyocr needs some version of Pillow which can be ignored.

We are using Open Images Dataset V6 as the dataset for this demo. We recommend using the third-party oidv6 PyPI
package to download the images necessary for this demo.

Run the following command after installing the prerequisites:

Terminal Session

[~user] > mkdir pkd_project
[~user] > cd pkd_project
[~user/pkd_project] > oidv6 downloader en --dataset data/oidv6 --type_data train --classes car --limit 10 --yes

Copy calling_peekingduck_in_python.ipynb to the pkd_project folder and you should have the following
directory structure at this point:

pkd_project/
calling_peekingduck_in_python.ipynb
data/

oidv6/
boxes/
metadata/
train/

car/

Import the Modules

Show/Hide Code

1 import os
2 from pathlib import Path
3

4 import cv2
5 import easyocr
6 import matplotlib.pyplot as plt
7 import numpy as np
8 import tensorflow as tf

(continues on next page)

3.5. Calling PeekingDuck in Python 47

https://storage.googleapis.com/openimages/web/index.html
https://pypi.org/project/oidv6/
https://pypi.org/project/oidv6/

PeekingDuck, Release developer

(continued from previous page)

9 from peekingduck.pipeline.nodes.draw import bbox
10 from peekingduck.pipeline.nodes.model import yolo_license_plate
11

12 %matplotlib inline

Lines 9 - 10: You can also do:

from peekingduck.pipeline.nodes.draw import bbox as pkd_bbox
from peekingduck.pipeline.nodes.model import yolo_license_plate as pkd_yolo_license_plate

bbox_node = pkd_bbox.Node()
yolo_license_plate_node = pkd_yolo_license_plate.Node()

to avoid potential name conflicts.

Initialize PeekingDuck Nodes

Show/Hide Code

1 yolo_lp_node = yolo_license_plate.Node()
2

3 bbox_node = bbox.Node(show_labels=True)

Lines 3: To change the node configuration, you can pass the new values to the Node() constructor as keyword argu-
ments.

Refer to the API Documentation for the configurable settings for each node.

Create a Dataset Loader

Show/Hide Code

1 data_dir = Path.cwd().resolve() / "data" / "oidv6" / "train"
2 dataset = tf.keras.preprocessing.image_dataset_from_directory(
3 data_dir, batch_size=1, shuffle=False
4)

Lines 2 - 4: We create the data loader using tf.keras.preprocessing.image_dataset_from_directory(); you
can also create your own data loader class.

Create a License Plate Parser Class

Show/Hide Code

1 class LPReader:
2 def __init__(self, use_gpu):
3 self.reader = easyocr.Reader(["en"], gpu=use_gpu)
4

5 def read(self, image):
6 """Reads text from the image and joins multiple strings to a
7 single string.

(continues on next page)

48 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

8 """
9 return " ".join(self.reader.readtext(image, detail=0))

10

11 reader = LPReader(False)

We create the license plate parser class in a Python class using easyocr to demonstrate how users can integrate the
PeekingDuck pipeline with external packages.

Alternatively, users can create a custom node for parsing license plates and run the pipeline through the CLI instead.
Refer to the custom nodes tutorial for more information.

The Inference Loop

Show/Hide Code

1 def get_best_license_plate(frame, bboxes, bbox_scores, width, height):
2 """Returns the image region enclosed by the bounding box with the highest
3 confidence score.
4 """
5 best_idx = np.argmax(bbox_scores)
6 best_bbox = bboxes[best_idx].astype(np.float32).reshape((-1, 2))
7 best_bbox[:, 0] *= width
8 best_bbox[:, 1] *= height
9 best_bbox = np.round(best_bbox).astype(int)

10

11 return frame[slice(*best_bbox[:, 1]), slice(*best_bbox[:, 0])]
12

13 num_col = 3
14 # For visualization, we plot 3 columns, 1) the original image, 2) image with
15 # bounding box, and 3) the detected license plate region with license plate
16 # number prediction shown as the plot title
17 fig, ax = plt.subplots(
18 len(dataset), num_col, figsize=(num_col * 3, len(dataset) * 3)
19)
20 for i, (element, path) in enumerate(zip(dataset, dataset.file_paths)):
21 image_orig = cv2.imread(path)
22 image_orig = cv2.cvtColor(image_orig, cv2.COLOR_BGR2RGB)
23 height, width = image_orig.shape[:2]
24

25 image = element[0].numpy().astype("uint8")[0].copy()
26

27 yolo_lp_input = {"img": image}
28 yolo_lp_output = yolo_lp_node.run(yolo_lp_input)
29

30 bbox_input = {
31 "img": image,
32 "bboxes": yolo_lp_output["bboxes"],
33 "bbox_labels": yolo_lp_output["bbox_labels"],
34 }
35 _ = bbox_node.run(bbox_input)
36

37 ax[i][0].imshow(image_orig)
(continues on next page)

3.5. Calling PeekingDuck in Python 49

PeekingDuck, Release developer

(continued from previous page)

38 ax[i][1].imshow(image)
39 # If there are any license plates detected, try to predict the license
40 # plate number
41 if len(yolo_lp_output["bboxes"]) > 0:
42 lp_image = get_best_license_plate(
43 image_orig, yolo_lp_output["bboxes"],
44 yolo_lp_output["bbox_scores"],
45 width,
46 height,
47)
48 lp_pred = reader.read(lp_image)
49 ax[i][2].imshow(lp_image)
50 ax[i][2].title.set_text(f"Pred: {lp_pred}")

Lines 1 - 11: We define a utility function for retrieving the image region of the license plate with the highest confidence
score to improve code clarity. For more information on how to convert between bounding box and image coordinates,
please refer to the Bounding Box vs Image Coordinates tutorial.

Lines 27 - 35: By carefully constructing the input for each of the nodes, we can perform the inference loop within a
custom workflow.

Lines 37 - 38: We plot the data using matplotlib for debugging and visualization purposes.

Lines 41 - 48: We integrate the inference loop with external packages such as the license plate parser we have created
earlier using easyocr.

3.6 Using Your Own Models

PeekingDuck offers pre-trained model nodes that can be used to tackle a wide variety of problems, but you may need
to train your own model on a custom dataset sometimes. This tutorial will show you how to package your model into
a custom model node, and use it with PeekingDuck. We will be tackling a manufacturing use case here - classifying
images of steel castings into “defective” or “normal” classes.

Casting is a manufacturing process in which a material such as metal in liquid form is poured into a mold and allowed to
solidify. The solidified result is also called a casting. Sometimes, defective castings are produced, and quality assurance
departments are responsible for preventing defective pieces from being used downstream. As inspections are usually
done manually, this adds a significant amount of time and cost, and thus there is an incentive to automate this process.

The images of castings used in this tutorial are the front faces of steel pump impellers. From the comparison below, it
can be seen that the defective casting has a rough, uneven edges while the normal casting has smooth edges.

3.6.1 Model Training

PeekingDuck is designed for model inference rather than model training. This optional section shows how a simple
Convolutional Neural Network (CNN) model can be trained separately from the PeekingDuck framework. If you have
already trained your own model, the following section describes how you can convert it to a custom model node, and
use it within PeekingDuck for inference.

50 Chapter 3. Tutorials

https://en.wikipedia.org/wiki/Impeller

PeekingDuck, Release developer

Fig. 11: Normal Casting Compared to Defective Casting

Setting Up

Install the following prerequisite for visualization.

> conda install matplotlib

Create the following project folder:

Terminal Session

[~user] > mkdir castings_project
[~user] > cd castings_project

Download the castings dataset and unzip the file to the castings_project folder.

Note: The castings dataset used in this example is modified from the original dataset from Kaggle.

You should have the following directory structure at this point:

castings_project/
castings_data/

inspection/
train/
validation/

3.6. Using Your Own Models 51

https://storage.googleapis.com/peekingduck/data/castings_data.zip
https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product?resource=download&select=casting_data

PeekingDuck, Release developer

Update Training Script

Create an empty train_classifier.py file within the castings_project folder, and update it with the following
code:

train_classifier.py:

Show/Hide Code for train_classifier.py

1 """
2 Script to train a classification model on images, save the model, and plot the␣

→˓training results
3

4 Adapted from: https://www.tensorflow.org/tutorials/images/classification
5 """
6

7 import pathlib
8 from typing import List, Tuple
9

10 import matplotlib.pyplot as plt
11 import tensorflow as tf
12 from tensorflow.keras import layers
13 from tensorflow.keras.models import Sequential
14 from tensorflow.keras.layers.experimental.preprocessing import Rescaling
15

16 # setup global constants
17 DATA_DIR = "./castings_data"
18 WEIGHTS_DIR = "./weights"
19 RESULTS = "training_results.png"
20 EPOCHS = 10
21 BATCH_SIZE = 32
22 IMG_HEIGHT = 180
23 IMG_WIDTH = 180
24

25

26 def prepare_data() -> Tuple[tf.data.Dataset, tf.data.Dataset, List[str]]:
27 """
28 Generate training and validation datasets from a folder of images.
29

30 Returns:
31 train_ds (tf.data.Dataset): Training dataset.
32 val_ds (tf.data.Dataset): Validation dataset.
33 class_names (List[str]): Names of all classes to be classified.
34 """
35

36 train_dir = pathlib.Path(DATA_DIR, "train")
37 validation_dir = pathlib.Path(DATA_DIR, "validation")
38

39 train_ds = tf.keras.preprocessing.image_dataset_from_directory(
40 train_dir,
41 image_size=(IMG_HEIGHT, IMG_WIDTH),
42 batch_size=BATCH_SIZE,
43)
44

(continues on next page)

52 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

45 val_ds = tf.keras.preprocessing.image_dataset_from_directory(
46 validation_dir,
47 image_size=(IMG_HEIGHT, IMG_WIDTH),
48 batch_size=BATCH_SIZE,
49)
50

51 class_names = train_ds.class_names
52

53 return train_ds, val_ds, class_names
54

55

56 def train_and_save_model(
57 train_ds: tf.data.Dataset, val_ds: tf.data.Dataset, class_names: List[str]
58) -> tf.keras.callbacks.History:
59 """
60 Train and save a classification model on the provided data.
61

62 Args:
63 train_ds (tf.data.Dataset): Training dataset.
64 val_ds (tf.data.Dataset): Validation dataset.
65 class_names (List[str]): Names of all classes to be classified.
66

67 Returns:
68 history (tf.keras.callbacks.History): A History object containing␣

→˓recorded events from
69 model training.
70 """
71

72 num_classes = len(class_names)
73

74 model = Sequential(
75 [
76 Rescaling(1.0 / 255, input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
77 layers.Conv2D(16, 3, padding="same", activation="relu"),
78 layers.MaxPooling2D(),
79 layers.Conv2D(32, 3, padding="same", activation="relu"),
80 layers.MaxPooling2D(),
81 layers.Conv2D(64, 3, padding="same", activation="relu"),
82 layers.MaxPooling2D(),
83 layers.Dropout(0.2),
84 layers.Flatten(),
85 layers.Dense(128, activation="relu"),
86 layers.Dense(num_classes),
87]
88)
89

90 model.compile(
91 optimizer="adam",
92 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
93 metrics=["accuracy"],
94)
95

(continues on next page)

3.6. Using Your Own Models 53

PeekingDuck, Release developer

(continued from previous page)

96 print(model.summary())
97 history = model.fit(train_ds, validation_data=val_ds, epochs=EPOCHS)
98 model.save(WEIGHTS_DIR)
99

100 return history
101

102

103 def plot_training_results(history: tf.keras.callbacks.History) -> None:
104 """
105 Plot training and validation accuracy and loss curves, and save the plot.
106

107 Args:
108 history (tf.keras.callbacks.History): A History object containing␣

→˓recorded events from
109 model training.
110 """
111 acc = history.history["accuracy"]
112 val_acc = history.history["val_accuracy"]
113 loss = history.history["loss"]
114 val_loss = history.history["val_loss"]
115 epochs_range = range(EPOCHS)
116

117 plt.figure(figsize=(16, 8))
118 plt.subplot(1, 2, 1)
119 plt.plot(epochs_range, acc, label="Training Accuracy")
120 plt.plot(epochs_range, val_acc, label="Validation Accuracy")
121 plt.legend(loc="lower right")
122 plt.title("Training and Validation Accuracy")
123

124 plt.subplot(1, 2, 2)
125 plt.plot(epochs_range, loss, label="Training Loss")
126 plt.plot(epochs_range, val_loss, label="Validation Loss")
127 plt.legend(loc="upper right")
128 plt.title("Training and Validation Loss")
129 plt.savefig(RESULTS)
130

131

132 if __name__ == "__main__":
133 train_ds, val_ds, class_names = prepare_data()
134 history = train_and_save_model(train_ds, val_ds, class_names)
135 plot_training_results(history)

54 Chapter 3. Tutorials

PeekingDuck, Release developer

Training the Model

Train the model by running the following command.

Terminal Session

[~user/castings_project] > python train_classifier.py

Note: For macOS Apple Silicon, the above code only works on macOS 12.x Monterey with the latest tensorflow-macos
and tensorflow-metal versions. It will crash on macOS 11.x Big Sur due to bugs in the outdated tensorflow versions.

The model will be trained for 10 epochs, and when training is completed, a new weights folder and
training_results.png will be created:

castings_project/
train_classifier.py
training_results.png
castings_data/

inspection/
train/
validation/

weights/
keras_metadata.pb
saved_model.pb
assets/
variables/

The plots from training_results.png shown below indicate that the model has performed well on the validation
dataset, and we are ready to create a custom model node from it.

3.6.2 Using Your Trained Model with PeekingDuck

This section will show you how to convert your trained model into a custom PeekingDuck node, and give an example
of how you can integrate this node in a PeekingDuck pipeline. It assumes that you are already familiar with the process
of creating custom nodes, covered in the earlier custom node tutorial.

Converting to a Custom Model Node

First, let’s create a new PeekingDuck project within the existing castings_project folder.

Terminal Session

[~user/castings_project] > peekingduck init

3.6. Using Your Own Models 55

PeekingDuck, Release developer

Fig. 12: Model Training Results

Next, we’ll use the peekingduck create-node command to create a custom node:

Terminal Session

[~user/castings_project] > peekingduck create-node
Creating new custom node. . .
Enter node directory relative to ~user/castings_project [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): model
Enter node name [my_custom_node]: casting_classifier

Node directory: ~user/castings_project/src/custom_nodes
Node type: model
Node name: casting_classifier

Creating the following files:
Config file: ~user/castings_project/src/custom_nodes/configs/model/casting_classifier.yml
Script file: ~user/castings_project/src/custom_nodes/model/casting_classifier.py

Proceed? [Y/n]:
Created node!

The castings_project folder structure should now look like this:

castings_project/

56 Chapter 3. Tutorials

PeekingDuck, Release developer

pipeline_config.yml
train_classifier.py
training_results.png
castings_data/

inspection/
train/
validation/

src/
custom_nodes/

configs/
model/

casting_classifier.yml
model/

casting_classifier.py
weights/

keras_metadata.pb
saved_model.pb
assets/
variables/

castings_project now contains two files that we need to modify to implement our custom node.

1. src/custom_nodes/configs/model/casting_classifier.yml:

casting_classifier.yml updated content:

1 input: ["img"]
2 output: ["pred_label", "pred_score"]
3

4 weights_parent_dir: weights
5 class_label_map: {0: "defective", 1: "normal"}

2. src/custom_nodes/model/casting_classifier.py:

casting_classifier.py updated content:

Show/Hide Code for casting_classifier.py

1 """
2 Casting classification model.
3 """
4

5 from typing import Any, Dict
6

7 import cv2
8 import numpy as np
9 import tensorflow as tf

10

11 from peekingduck.pipeline.nodes.node import AbstractNode
12

13 IMG_HEIGHT = 180
14 IMG_WIDTH = 180
15

16

17 class Node(AbstractNode):
18 """Initializes and uses a CNN to predict if an image frame shows a normal

(continues on next page)

3.6. Using Your Own Models 57

PeekingDuck, Release developer

(continued from previous page)

19 or defective casting.
20 """
21

22 def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
23 super().__init__(config, node_path=__name__, **kwargs)
24 self.model = tf.keras.models.load_model(self.weights_parent_dir)
25

26 def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
27 """Reads the image input and returns the predicted class label and
28 confidence score.
29

30 Args:
31 inputs (dict): Dictionary with key "img".
32

33 Returns:
34 outputs (dict): Dictionary with keys "pred_label" and "pred_score".
35 """
36 img = cv2.cvtColor(inputs["img"], cv2.COLOR_BGR2RGB)
37 img = cv2.resize(img, (IMG_WIDTH, IMG_HEIGHT))
38 img = np.expand_dims(img, axis=0)
39 predictions = self.model.predict(img)
40 score = tf.nn.softmax(predictions[0])
41

42 return {
43 "pred_label": self.class_label_map[np.argmax(score)],
44 "pred_score": 100.0 * np.max(score),
45 }

The custom node takes in the built-in PeekingDuck img data type, makes a prediction based on the image, and produces
two custom data types: pred_label, the predicted label (“defective” or “normal”); and pred_score, which is the
confidence score of the prediction.

Using the Classifier in a PeekingDuck Pipeline

We’ll now pair this custom node with other PeekingDuck nodes to build a complete solution. Imagine an automated
inspection system like the one shown below, where the castings are placed on a conveyor belt and a camera takes a
picture of each casting and sends it to the PeekingDuck pipeline for prediction. A report showing the predicted result
for each casting is produced, and the quality inspector can use it for further analysis.

Edit the pipeline_config.yml file to use the input.visual node to read in the images, and the output.
csv_writer node to produce the report. We will test our solution on the 10 casting images in castings_data/
inspection, where each image’s filename is a unique casting ID such as 28_4137.jpeg.

pipeline_config.yml:

pipeline_config.yml updated content:

1 nodes:
2 - input.visual:
3 source: castings_data/inspection
4 - custom_nodes.model.casting_classifier

(continues on next page)

58 Chapter 3. Tutorials

PeekingDuck, Release developer

Fig. 13: Vision Based Inspection of Conveyed Objects (Source: ScienceDirect)

(continued from previous page)

5 - output.csv_writer:
6 stats_to_track: ["filename", "pred_label", "pred_score"]
7 file_path: casting_predictions.csv
8 logging_interval: 0

Line 2 input.visual: tells PeekingDuck to load the images from castings_data/inspection.
Line 4 Calls the custom model node that you have just created.
Line 5 output.csv_writer: produces the report for the quality inspector in a CSV file
castings_predictions_DDMMYY-hh-mm-ss.csv (time stamp appended to file_path). This node
receives the filename data type from input.visual, the custom data types pred_label and
pred_score from the custom model node, and writes them to the columns of the CSV file.

Run the above with the command peekingduck run.

Open the created CSV file and you would see the following results. Half of the castings have been predicted as defective
with high confidence scores. As the file name of each image is its unique casting ID, the quality inspector would be
able to check the results with the actual castings if needed.

To visualize the predictions alongside the casting images, create an empty Python script named visualize_results.
py, and update it with the following code:

visualize_results.py:

Show/Hide Code for visualize_results.py

1 """
2 Script to visualize the prediction results alongside the casting images
3 """
4

5 import csv
6

7 import cv2
8 import matplotlib.pyplot as plt

(continues on next page)

3.6. Using Your Own Models 59

https://www.sciencedirect.com/science/article/pii/S221282711200248X

PeekingDuck, Release developer

Fig. 14: Casting Prediction Results

(continued from previous page)

9

10 CSV_FILE = "casting_predictions_280422-11-50-30.csv" # change file name␣
→˓accordingly

11 INSPECTION_IMGS_DIR = "castings_data/inspection/"
12 RESULTS_FILE = "inspection_results.png"
13

14 fig, axs = plt.subplots(2, 5, figsize=(50, 20))
15

16 with open(CSV_FILE) as csv_file:
17 csv_reader = csv.reader(csv_file, delimiter=",")
18 next(csv_reader, None)
19 for i, row in enumerate(csv_reader):
20 # csv columns follow this order: 'Time', 'filename', 'pred_label', 'pred_score'
21 image_path = INSPECTION_IMGS_DIR + row[1]
22 image_orig = cv2.imread(image_path)
23 image_orig = cv2.cvtColor(image_orig, cv2.COLOR_BGR2RGB)
24

25 row_idx = 0 if i < 5 else 1
26 axs[row_idx][i % 5].imshow(image_orig)
27 axs[row_idx][i % 5].set_title(row[1] + " - " + row[2], fontsize=35)
28 axs[row_idx][i % 5].axis("off")
29

30 fig.savefig(RESULTS_FILE)

In Line 10, replace the name of CSV_FILE with the name of the CSV file produced on your system, as a timestamp
would have been appended to the file name.

Run the following command to visualize the results.

Terminal Session

[~user/castings_project] > python visualize_results.py

60 Chapter 3. Tutorials

PeekingDuck, Release developer

An inspection_results.png would be created, as shown below. The top row of castings are clearly defective, as
they have rough, uneven edges, while the bottom row of castings look normal. Therefore, the prediction results are
accurate for this batch of inspected castings. The quality inspector can provide feedback to the manufacturing team to
further investigate the defective castings based on the casting IDs.

Fig. 15: Casting Prediction Visualization

This concludes the guided example on using your own custom models.

3.6.3 Custom Object Detection Models

The previous example was centered on the task of image classification. Object detection is another common task in
Computer Vision. PeekingDuck offers several pre-trained object detection model nodes which can detect up to 80
different types of objects, such as persons, cars, and dogs, just to name a few. For the complete list of detectable
objects, refer to the Object Detection IDs page. Quite often, you may need to train a custom object detection model
on your own dataset, such as defects on a printed circuit board (PCB) as shown below. This section discusses some
important considerations for the object detection task, supplementing the guided example above.

PeekingDuck’s object detection model nodes conventionally receive the img data type, and produce the bboxes,
bbox_labels, and bbox_scores data types. An example of this can be seen in the API documentation for a node such
as model.efficientdet. We strongly recommend keeping to these data type conventions for your custom object
detection node, ensuring that they adhere to the described format, e.g. img is in BGR format, and bboxes is a NumPy
array of a certain shape.

This allows you to leverage on PeekingDuck’s ecosystem of existing nodes. For example, by ensuring that your custom
model node receives img in the correct format, you are able to use PeekingDuck’s input.visual node, which can
read from multiple visual sources such as a folder of images or videos, an online cloud source, or a CCTV/webcam live
feed. By ensuring that your custom model node produces bboxes and bbox_labels in the correct format, you are able
to use PeekingDuck’s draw.bbox node to draw bounding boxes and associated labels around the detected objects.

By doing so, you would have saved a significant amount of development time, and can focus more on developing and
finetuning your custom object detection model. This was just a simple example, and you can find out more about
PeekingDuck’s nodes from our API Documentation, and PeekingDuck’s built-in data types from our Glossary.

3.6. Using Your Own Models 61

PeekingDuck, Release developer

Fig. 16: Object Detection of Defects on PCB (Source: The Institution of Engineering and Technology)

62 Chapter 3. Tutorials

https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/trit.2019.0019

CHAPTER

FOUR

PEEKINGDUCK ECOSYSTEM

This section covers the extensions to the PeekingDuck ecosystem.

4.1 PeekingDuck Viewer

The PeekingDuck Viewer offers you an interactive GUI application to manage and run PeekingDuck pipelines, and to
view and analyze the output video.

4.1.1 Running the Viewer

The PeekingDuck Viewer can be activated using the CLI --viewer option:

Terminal Session

[~user] > peekingduck run --viewer

A screenshot of the Viewer and its GUI components is shown below:

Once the Viewer screen appears, PeekingDuck will begin executing the current pipeline. The pipeline output is dis-
played as a video in the center of the screen, with a progress bar below it.

If pipeline input length is deterministic (e.g. using a video file as the source), the progress bar functions like a normal
progress bar moving from start to end. Upon completion, the progress bar will be replaced with a slider that you can
use to navigate the output video.

If the length is non-deterministic (e.g. capturing a webcam video), then the progress bar will function in a non-
deterministic manner: animating itself to indicate progress but without an end point (as PeekingDuck has no idea
how long the webcam video will be). In this case, click the Play/Stop button to end the webcam video capture, and
the progress bar will become a slider.

63

PeekingDuck, Release developer

Fig. 1: The PeekingDuck Viewer screen, with explanations for the main controls.

64 Chapter 4. PeekingDuck Ecosystem

PeekingDuck, Release developer

4.1.2 Navigating the Output Video

You can examine the output video of the executed pipeline by using the Play/Stop button to replay the entire video.

You may also scrub through the video using the slider to go directly to the frames of interest. The current video frame
number is shown to the right of the slider, serving as a position indicator. To “jump” to a particular position on the
slider, click the right mouse button on that position. To move frame-by-frame forward/backward, click the left mouse
button anywhere to the right/left of the current slider position.

The + (zoom in) and - (zoom out) buttons allow you to adjust the video size. You may also use keyboard shortcuts to
adjust the zoom: CTRL - - zoom out, CTRL - + zoom in, CTRL - = reset zoom

4.1.3 Using the Pipeline Playlist

Clicking the Playlist button will show/hide the playlist.

Fig. 2: PeekingDuck Viewer with playlist shown.

The above screenshot shows the playlist on the right. The playlist is a collection of pipeline files that can be run with
PeekingDuck. The current pipeline is automatically added to the playlist. This playlist is specific to you and is saved
across different PeekingDuck Viewer runs.

Click to select a pipeline in the playlist. The pipeline’s information will be displayed in the Pipeline Information
panel below. It shows the pipeline’s name, last modified date/time, and full file path.

4.1. PeekingDuck Viewer 65

PeekingDuck, Release developer

To run the currently selected pipeline, click the Run button.

The Add button lets you manually add a pipeline file to the playlist. It will display a File Explorer dialog. Use it to
select a PeekingDuck pipeline YAML file and it will be added to your playlist.

The Delete button will remove the currently selected pipeline from the playlist, after you have confirmed the deletion.

If the pipeline in the playlist is red, it means the pipeline YAML file is missing. This could mean the pipeline had been
added earlier, but its YAML file had since been deleted or moved to another folder. Delete the missing pipeline entry
to remove it from the playlist.

The list of pipelines can be sorted in reverse order by clicking the playlist header.

Note: The playlist is saved in ~/.peekingduck/playlist.yml, where ~ is the user’s home folder.

4.1.4 Exiting the Viewer

To exit the Viewer, close the Viewer window.

66 Chapter 4. PeekingDuck Ecosystem

CHAPTER

FIVE

MODEL RESOURCES & INFORMATION

5.1 Object Detection Models

5.1.1 List of Object Detection Models

The table below shows the object detection models available for each task category.

Category Model Documentation
General EfficientDet model.efficientdet

YOLOv4 model.yolo
YOLOX model.yolox

Face MTCNN model.mtcnn
YOLOv4 (Face) model.yolo_face

License plate YOLOv4 (License Plate) model.yolo_license_plate

5.1.2 Benchmarks

Inference Speed

The table below shows the frames per second (FPS) of each model type.

Model Type Size CPU GPU
single multiple single multiple

YOLO v4tiny 416 22.42 21.71 65.24 57.50
v4 416 2.62 2.59 30.40 28.71

EfficientDet 0 512 5.24 5.25 29.51 29.39
1 640 2.53 2.49 23.79 24.44
2 768 1.54 1.50 19.86 20.51
3 896 0.78 0.75 14.69 14.84
4 1024 0.43 0.42 11.74 11.88

MTCNN – – 32.42 18.53 56.35 51.45
YOLOX yolox-tiny 416 19.43 19.29 55.36 55.38

yolox-s 640 15.10 15.44 53.81 53.74
yolox-m 640 8.29 8.04 42.79 43.83
yolox-l 640 4.59 4.75 35.30 36.08

67

PeekingDuck, Release developer

Hardware

The following hardware were used to conduct the FPS benchmarks:

- CPU: 2.8 GHz 4-Core Intel Xeon (2020, Cascade Lake) CPU and 16GB RAM
- GPU: NVIDIA A100, paired with 2.2 GHz 6-Core Intel Xeon CPU and 85GB RAM

Test Conditions

The following test conditions were followed:

- input.visual, the model of interest, and dabble.fps nodes were used to perform inference on videos
- 2 videos were used to benchmark each model, one with only 1 human (single), and the other with multiple
humans (multiple)
- Both videos are about 1 minute each, recorded at ~30 FPS, which translates to about 1,800 frames to process
per video
- 1280×720 (HD ready) resolution was used, as a bridge between 640×480 (VGA) of poorer quality webcams,
and 1920×1080 (Full HD) of CCTVs

Model Accuracy

The table below shows the performance of our object detection models using the detection evaluation metrics from
COCO. Description of these metrics can be found here.

Model Type Size AP AP
IoU=.50

AP
IoU=.75

AP
small

AP
medium

AP
large

AR
max=1

AR
max=10

AR
max=100

AR
small

AR
medium

AR
large

YOLO v4tiny 416 17.4 32.7 16.6 6.4 20.1 25.6 16.7 22.8 21.1 6.1 23.7 32.1
v4 416 43.7 64.0 48.1 23.1 49.6 60.9 33.3 49.1 50.0 26.2 56.1 70.3

Effi-
cient-
Det

0 512 29.7 44.3 32.4 7.4 34.4 49.2 25.3 34.5 34.8 7.8 39.7 58.4
1 640 35.2 50.8 38.8 14.3 40.1 53.9 28.8 40.5 40.9 15.6 46.3 62.8
2 768 38.5 54.4 42.1 18.9 42.7 57.1 30.9 43.9 44.4 20.8 48.9 65.5
3 896 41.1 57.0 45.2 22.2 45.1 58.7 32.6 46.7 47.3 24.8 51.5 66.9
4 1024 43.4 59.2 47.8 24.2 47.6 60.4 33.8 49.1 49.7 27.3 53.9 68.7

YOLOX yolox-
tiny

416 32.4 50.5 33.9 13.4 35.4 49.5 28.2 43.5 45.7 20.7 51.7 65.9

yolox-
s

416 35.6 53.4 37.8 14.0 39.3 55.7 30.3 46.0 48.1 20.9 54.7 70.8

yolox-
m

416 41.6 59.7 44.4 18.8 46.9 62.8 33.9 51.6 53.7 26.9 60.9 76.8

yolox-
l

416 44.5 62.5 47.6 21.9 50.6 65.5 35.5 54.2 56.3 31.0 64.0 78.1

68 Chapter 5. Model Resources & Information

https://cocodataset.org/#detection-eval

PeekingDuck, Release developer

Dataset

The MS COCO (val 2017) dataset is used. We integrated the COCO API into the PeekingDuck pipeline for loading
the annotations and evaluating the outputs from the models. All values are reported in percentages.

All images from the 80 object categories in the MS COCO (val 2017) dataset were processed.

Test Conditions

The following test conditions were followed:

- The tests were performed using pycocotools on the MS COCO dataset
- The evaluation metrics have been compared with the original repository of the respective object detection
models for consistency

5.1.3 Object Detection IDs

General Object Detection

The tables below provide the associated indices for each class in object detectors.
To detect all classes, specify detect: ["*"] under the object detection node configuration in
pipeline_config.yml.

Class name ID Class name ID
YOLO / YOLOX EfficientDet YOLO / YOLOX EfficientDet

person 0 0 elephant 20 21
bicycle 1 1 bear 21 22
car 2 2 zebra 22 23
motorcycle 3 3 giraffe 23 24
aeroplane 4 4 backpack 24 26
bus 5 5 umbrella 25 27
train 6 6 handbag 26 30
truck 7 7 tie 27 31
boat 8 8 suitcase 28 32
traffic light 9 9 frisbee 29 33
fire hydrant 10 10 skis 30 34
stop sign 11 12 snowboard 31 35
parking meter 12 13 sports ball 32 36
bench 13 14 kite 33 37
bird 14 15 baseball bat 34 38
cat 15 16 baseball glove 35 39
dog 16 17 skateboard 36 40
horse 17 18 surfboard 37 41
sheep 18 19 tennis racket 38 42
cow 19 20 bottle 39 43

5.1. Object Detection Models 69

https://cocodataset.org/#download
https://pypi.org/project/pycocotools/

PeekingDuck, Release developer

Class name ID Class name ID
YOLO / YOLOX EfficientDet YOLO / YOLOX EfficientDet

wine glass 40 45 dining table 60 66
cup 41 46 toilet 61 69
fork 42 47 tv 62 71
knife 43 48 laptop 63 72
spoon 44 49 mouse 64 73
bowl 45 50 remote 65 74
banana 46 51 keyboard 66 75
apple 47 52 cell phone 67 76
sandwich 48 53 microwave 68 77
orange 49 54 oven 69 78
broccoli 50 55 toaster 70 79
carrot 51 56 sink 71 80
hot dog 52 57 refrigerator 72 81
pizza 53 58 book 73 83
donut 54 59 clock 74 84
cake 55 60 vase 75 85
chair 56 61 scissors 76 86
couch 57 62 teddy bear 77 87
potted plant 58 63 hair drier 78 88
bed 59 64 toothbrush 79 89

Face Detection

This table provides the associated indices for the model.yolo_face node.

Class name ID
no mask 0
mask 1

5.2 Pose Estimation Models

5.2.1 List of Pose Estimation Models

The table below shows the pose estimation models available for each task category.

Category Model Documentation
Whole body HRNet model.hrnet

PoseNet model.posenet
MoveNet model.movenet

70 Chapter 5. Model Resources & Information

PeekingDuck, Release developer

5.2.2 Benchmarks

Inference Speed

The table below shows the frames per second (FPS) of each model type.

Model Type Size CPU GPU
single multiple single multiple

PoseNet 50 225 64.46 51.95 136.31 89.37
75 225 57.62 47.01 132.84 83.73
100 225 44.70 37.60 132.73 81.24
resnet 225 18.77 17.21 73.15 51.65

HRNet (YOLO) (v4tiny) 256 × 192 (416) 5.86 1.09 21.91 13.86
MoveNet SinglePose Lightning 192 40.78 40.54 99.47 –

SinglePose Thunder 256 25.13 24.87 92.05 –
MultiPose Lightning 256 or multiple of 32 25.33 24.90 80.64 79.32

Hardware

The following hardware were used to conduct the FPS benchmarks:

- CPU: 2.8 GHz 4-Core Intel Xeon (2020, Cascade Lake) CPU and 16GB RAM
- GPU: NVIDIA A100, paired with 2.2 GHz 6-Core Intel Xeon CPU and 85GB RAM

Test Conditions

The following test conditions were followed:

- input.visual, the model of interest, and dabble.fps nodes were used to perform inference on videos
- 2 videos were used to benchmark each model, one with only 1 human (single), and the other with multiple
humans (multiple)
- Both videos are about 1 minute each, recorded at ~30 FPS, which translates to about 1,800 frames to process
per video
- 1280×720 (HD ready) resolution was used, as a bridge between 640×480 (VGA) of poorer quality webcams,
and 1920×1080 (Full HD) of CCTVs

Model Accuracy

The table below shows the performance of our pose estimation models using the keypoint evaluation metrics from
COCO. Description of these metrics can be found here.

5.2. Pose Estimation Models 71

https://cocodataset.org/#keypoints-eval

PeekingDuck, Release developer

Model Type Size AP AP
OKS=.50

AP
OKS=.75

AP
medium

AP
large

AR AR
OKS=.50

AR
OKS=.75

AR
medium

AR
large

PoseNet 50 225 5.2 15.5 2.7 0.8 11.8 9.6 22.7 7.1 1.4 20.7
75 225 7.2 19.7 3.6 1.3 15.9 12.1 26.5 9.3 2.2 25.5
100 225 7.7 20.8 4.4 1.5 17.1 12.6 27.7 10.1 2.3 26.5
resnet 225 11.9 27.4 8.3 2.2 25.3 17.3 32.5 15.9 2.9 36.8

HRNet
(YOLO)

(v4tiny) 256
× 192
(416)

35.8 61.5 37.5 30.1 44.0 40.2 64.4 42.7 33.0 50.2

MoveNet single-
pose_lightning

256 x
256

7.3 15.7 5.7 1.3 15.4 8.8 17.6 7.7 1.1 19.2

single-
pose_thunder

256 x
256

11.6 21.3 10.7 3.0 23.1 13.1 22.5 12.8 2.8 27.1

multi-
pose_lightning

256 x
256

18.7 36.8 16.3 9.0 31.8 21.0 38.5 19.2 9.3 37.0

Dataset

The MS COCO (val 2017) dataset is used. We integrated the COCO API into the PeekingDuck pipeline for loading
the annotations and evaluating the outputs from the models. All values are reported in percentages.

All images from the “person” category in the MS COCO (val 2017) dataset were processed.

Test Conditions

The following test conditions were followed:

- The tests were performed using pycocotools on the MS COCO dataset
- The evaluation metrics have been compared with the original repository of the respective pose estimation
models for consistency

5.2.3 Keypoint IDs

Whole Body

Keypoint ID Keypoint ID
nose 0 left wrist 9
left eye 1 right wrist 10
right eye 2 left hip 11
left ear 3 right hip 12
right ear 4 left knee 13
left shoulder 5 right knee 14
right shoulder 6 left ankle 15
left elbow 7 right ankle 16
right elbow 8

72 Chapter 5. Model Resources & Information

https://cocodataset.org/#download
https://pypi.org/project/pycocotools/

PeekingDuck, Release developer

5.3 Object Tracking Models

5.3.1 List of Object Tracking Models

The table below shows the object tracking models available for each task category.

Category Model Documentation
General IoU Tracker dabble.tracking

OpenCV MOSSE Tracker dabble.tracking
Human JDE model.jde

FairMOT model.fairmot

5.3.2 Benchmarks

Inference Speed

The table below shows the frames per second (FPS) of each model type.

Model Object Detector Type Input Size CPU GPU
IoU Tracker with YOLOX yolox-m – 7.87 36.18
OpenCV MOSSE Tracker with YOLOX yolox-m – 6.74 21.45
JDE – – 1.86 26.32
FairMOT – 864 × 480 0.30 22.60

Hardware

The following hardware were used to conduct the FPS benchmarks:

- CPU: 2.8 GHz 4-Core Intel Xeon (Cascade Lake) CPU and 16GB RAM
- GPU: NVIDIA A100, paired with 2.2 GHz 6-Core Intel Xeon CPU and 85GB RAM

Test Conditions

The following test conditions were followed:

- input.visual, the model of interest, and dabble.fps nodes were used to perform inference on videos
- A video sequence from the MOT Challenge dataset (MOT16-04) was used
- The video sequence has 1050 frames and is encoded at 30 FPS, which translates to about 35 seconds
- 1280×720 (HD ready) resolution was used, as a bridge between 640×480 (VGA) of poorer quality webcams,
and 1920×1080 (Full HD) of CCTVs

5.3. Object Tracking Models 73

PeekingDuck, Release developer

Model Accuracy

The table below shows the performance of our object tracking models using multiple object tracker (MOT) metrics
from MOT Challenge. Description of these metrics can be found here.

Model Object Detector Type MOTA IDF1 ID Sw. FP FN
IoU Tracker with YOLOX yolox-m 34.1 40.9 960 8997 62830
OpenCV MOSSE Tracker with YOLOX yolox-m 32.8 38 2349 7695 65268
JDE – 70.1 65.1 1321 6412 25292
FairMOT – 81.8 80.9 536 3663 15903

Dataset

The MOT16 (train) dataset is used. We integrated the MOT Challenge API into the PeekingDuck pipeline for loading
the annotations and evaluating the outputs from the models. MOTA and IDF1 are reported in percentages while IDS,
FP, and FN are raw numbers.

Only the “pedestrian” category in MOT16 (train) was processed.

5.4 Crowd Counting Models

5.4.1 List of Crowd Counting Models

The table below shows the crowd counting models available.

Model Documentation
CSRNet model.csrnet

5.4.2 Benchmarks

Model Accuracy

The table below shows the performance of CSRNet obtained from the original GitHub repo, using Mean Absolute
Error (MAE) as the metric. The reported metrics are close to the results from the CSRNet paper.

Model Type Dataset MAE
CSRNet dense ShanghaiTech Part A 65.92

sparse ShanghaiTech Part B 11.01

74 Chapter 5. Model Resources & Information

https://motchallenge.net/results/MOT16/#metrics
https://motchallenge.net/data/MOT16/
https://github.com/Neerajj9/CSRNet-keras
https://arxiv.org/pdf/1802.10062.pdf

PeekingDuck, Release developer

Dataset

The ShanghaiTech dataset was used. It contains 1,198 annotated images split into 2 parts: Part A contains 482 images
with highly congested scenes, while Part B contains 716 images with relatively sparse crowd scenes.

5.5 Instance Segmentation Models

5.5.1 List of Instance Segmentation Models

The table below shows the instance segmentation models available.

Model Documentation
Mask R-CNN model.mask_rcnn
YolactEdge model.yolact_edge

5.5.2 Benchmarks

Inference Speed

The table below shows the frames per second (FPS) of each model type.

Model Type Size CPU GPU
single multiple single multiple

Mask R-CNN r50-fpn 800-1333 0.76 0.72 22.30 18.58
r101-fpn 800-1333 0.61 0.57 17.14 14.83

YolactEdge r50-fpn 550 2.99 2.93 40.84 33.94
r101-fpn 550 2.32 2.27 29.55 25.89
mobilenetv2 550 4.93 4.64 48.59 36.66

Hardware

The following hardware were used to conduct the FPS benchmarks:

- CPU: 2.8 GHz 4-Core Intel Xeon (2020, Cascade Lake) CPU and 16GB RAM
- GPU: NVIDIA A100, paired with 2.2 GHz 6-Core Intel Xeon CPU and 85GB RAM

Test Conditions

The following test conditions were followed:

- input.visual, the model of interest, and dabble.fps nodes were used to perform inference on videos
- 2 videos were used to benchmark each model, one with only 1 human (single), and the other with multiple
humans (multiple)
- Both videos are about 1 minute each, recorded at ~30 FPS, which translates to about 1,800 frames to process
per video

5.5. Instance Segmentation Models 75

https://www.kaggle.com/tthien/shanghaitech

PeekingDuck, Release developer

- 1280×720 (HD ready) resolution was used, as a bridge between 640×480 (VGA) of poorer quality webcams,
and 1920×1080 (Full HD) of CCTVs

Model Accuracy

The table below shows the performance of our Instance Segmentation models using the detection evaluation metrics
from COCO. Description of these metrics can be found here.

Evaluation on masks

Model Type Size AP AP
IoU=.50

AP
IoU=.75

AP
small

AP
medium

AP
large

AR
max=1

AR
max=10

AR
max=100

AR
small

AR
medium

AR
large

Mask
R-
CNN

r50-
fpn

800-
1333

34.5 56.0 36.7 17.8 37.9 47.1 29.7 45.6 47.6 27.4 51.4 63.8

r101-
fpn

800-
1333

37.1 59.0 39.6 20.4 41.1 49.8 31.4 49.1 51.4 31.9 55.6 67.3

Yolact-
Edge

r50-
fpn

550 27.8 45.6 28.9 10.4 30.0 43.9 26.3 37.5 38.2 16.3 41.9 57.2

r101-
fpn

550 29.6 47.8 31.1 11.3 32.3 46.3 27.4 38.9 39.7 17.4 43.6 59.6

mo-
bilenetv2

550 21.9 37.2 22.6 7.0 22.9 34.7 22.5 31.7 32.3 12.0 34.8 48.3

Evaluation on bounding boxes

Model Type Size AP AP
IoU=.50

AP
IoU=.75

AP
small

AP
medium

AP
large

AR
max=1

AR
max=10

AR
max=100

AR
small

AR
medium

AR
large

Mask
R-
CNN

r50-
fpn

800-
1333

37.8 59.2 41.1 21.6 41.2 49.3 31.4 49.5 51.9 32.6 55.7 66.6

r101-
fpn

800-
1333

41.8 62.2 45.4 24.9 45.8 54.3 34.4 54.6 57.3 38.2 61.4 72.4

Yolact-
Edge

r50-
fpn

550 30.3 49.8 32.2 14.4 32.1 44.6 27.4 40.1 41.2 21.6 43.7 57.5

r101-
fpn

550 32.6 52.5 34.9 15.2 35.0 47.6 28.6 41.8 42.9 22.6 45.9 59.9

mo-
bilenetv2

550 23.2 40.8 23.8 9.3 23.4 35.1 22.9 33.5 34.5 15.8 35.2 49.1

“””

76 Chapter 5. Model Resources & Information

https://cocodataset.org/#detection-eval

PeekingDuck, Release developer

Dataset

The MS COCO (val 2017) dataset is used. We integrated the COCO API into the PeekingDuck pipeline for loading
the annotations and evaluating the outputs from the models. All values are reported in percentages.

All images from the 80 object categories in the MS COCO (val 2017) dataset were processed.

Test Conditions

The following test conditions were followed:

- The tests were performed using pycocotools on the MS COCO dataset
- The evaluation metrics have been compared with the original repository of the respective instance
segmentation models for consistency

5.5.3 Instance Segmentation IDs

General Instance Segmentation

The tables below provide the associated indices for each class.
To detect all classes, specify detect: ["*"] under the instance segmentation node configuration in
pipeline_config.yml.

Class name ID Class name ID
Mask R-CNN YolactEdge Mask R-CNN YolactEdge

person 0 0 elephant 21 20
bicycle 1 1 bear 22 21
car 2 2 zebra 23 22
motorcycle 3 3 giraffe 24 23
aeroplane 4 4 backpack 26 24
bus 5 5 umbrella 27 25
train 6 6 handbag 30 26
truck 7 7 tie 31 27
boat 8 8 suitcase 32 28
traffic light 9 9 frisbee 33 29
fire hydrant 10 10 skis 34 30
stop sign 12 11 snowboard 35 31
parking meter 13 12 sports ball 36 32
bench 14 13 kite 37 33
bird 15 14 baseball bat 38 34
cat 16 15 baseball glove 39 35
dog 17 16 skateboard 40 36
horse 18 17 surfboard 41 37
sheep 19 18 tennis racket 42 38
cow 20 19 bottle 43 39

5.5. Instance Segmentation Models 77

https://cocodataset.org/#download
https://pypi.org/project/pycocotools/

PeekingDuck, Release developer

Class name ID Class name ID
Mask R-CNN YolactEdge Mask R-CNN YolactEdge

wine glass 45 40 dining table 66 60
cup 46 41 toilet 69 61
fork 47 42 tv 71 62
knife 48 43 laptop 72 63
spoon 49 44 mouse 73 64
bowl 50 45 remote 74 65
banana 51 46 keyboard 75 66
apple 52 47 cell phone 76 67
sandwich 53 48 microwave 77 68
orange 54 49 oven 78 69
broccoli 55 50 toaster 79 70
carrot 56 51 sink 80 71
hot dog 57 52 refrigerator 81 72
pizza 58 53 book 83 73
donut 59 54 clock 84 74
cake 60 55 vase 85 75
chair 61 56 scissors 86 76
couch 62 57 teddy bear 87 77
potted plant 63 58 hair drier 88 78
bed 64 59 toothbrush 89 79

5.6 Bibliography

This document contains links, references, academic literature, and github repositories for related Computer Vision
technologies and projects.

5.6.1 Legend

Symbol Remarks
Available in PeekingDuck
Singapore-based research

5.6.2 Object Detection

Reference Paper Code
YOLOX XXX XXX
YOLOv4 XXX XXX
EfficientDet XXX XXX
MTCNN XXX XXX
Recent advances in deep learning for object detection (2020) XXX NA

78 Chapter 5. Model Resources & Information

https://arxiv.org/abs/2107.08430
https://github.com/Megvii-BaseDetection/YOLOX
http://arxiv.org/abs/2004.10934
https://github.com/hunglc007/tensorflow-yolov4-tflite
http://arxiv.org/abs/1911.09070
https://github.com/xuannianz/EfficientDet
https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf
https://github.com/kpzhang93/MTCNN_face_detection_alignment
https://ink.library.smu.edu.sg/sis_research/5096

PeekingDuck, Release developer

5.6.3 Pose Estimation

Reference Paper Code
HRNet XXX XXX
PoseNet XXX XXX
MoveNet TF Blog TF Hub
NTU RGB+D Dataset (2016) XXX NA

5.6.4 Crowd Counting

Reference Paper Code
CSRNet XXX XXX

5.6.5 Object Tracking

Reference Paper Code
JDE XXX XXX
FairMOT XXX XXX

5.6.6 Instance Segmentation

Reference Paper Code
Mask R-CNN XXX Torchvision Models
YolactEdge XXX XXX

5.6. Bibliography 79

http://arxiv.org/abs/1908.07919
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
http://arxiv.org/abs/1803.08225
https://github.com/rwightman/posenet-python
https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://tfhub.dev/google/movenet/multipose/lightning/1
https://arxiv.org/abs/1604.02808
https://arxiv.org/pdf/1802.10062.pdf
https://github.com/Neerajj9/CSRNet-keras
https://arxiv.org/abs/1909.12605v2
https://github.com/Zhongdao/Towards-Realtime-MOT
https://arxiv.org/abs/2004.01888
https://github.com/ifzhang/FairMOT
https://arxiv.org/abs/1703.06870
https://pytorch.org/vision/0.11/_modules/torchvision/models/detection/mask_rcnn.html
https://arxiv.org/abs/2012.12259
https://github.com/haotian-liu/yolact_edge

PeekingDuck, Release developer

80 Chapter 5. Model Resources & Information

CHAPTER

SIX

EDGE AI

PeekingDuck supports running optimized TensorRT1 models on devices with NVIDIA GPUs. Using the TensorRT
model on these devices provides a speed boost over the regular TensorFlow/PyTorch version. A potential use case is
running PeekingDuck on an NVIDIA Jetson device for Edge AI inference.

Currently, PeekingDuck includes TensorRT versions of the following models:

1. MoveNet model for pose estimation,

2. YOLOX model for object detection.

6.1 Installing TensorRT

The following packages are required to run PeekingDuck’s TensorRT models:

1. TensorFlow

2. PyTorch

3. PyCUDA

As the actual installation steps vary greatly depending on the user’s device, operating system, software environment,
and pre-installed libraries/packages, we are unable to provide step-by-step installation instructions.

The user may refer to NVIDIA’s TensorRT Documentation for detailed TensorRT installation information.

6.2 Using TensorRT Models

To use the TensorRT version of a model, change the model_format of the model configuration to tensorrt.

The following pipeline_config.yml shows how to use the MoveNet TensorRT model for pose estimation:

1 nodes:
2 - input.visual:
3 source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
4 - model.movenet:
5 model_format: tensorrt
6 model_type: singlepose_lightning
7 - draw.poses
8 - dabble.fps
9 - draw.legend:

(continues on next page)

1 NVIDIA TensorRT Reference

81

https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://developer.nvidia.com/tensorrt

PeekingDuck, Release developer

(continued from previous page)

10 show: ["fps"]
11 - output.screen

The following pipeline_config.yml shows how to use the YOLOX TensorRT model for object detection:

1 nodes:
2 - input.visual:
3 source: https://storage.googleapis.com/peekingduck/videos/cat_and_computer.mp4
4 - model.yolox:
5 detect: ["cup", "cat", "laptop", "keyboard", "mouse"]
6 model_format: tensorrt
7 model_type: yolox-tiny
8 - draw.bbox:
9 show_labels: True # configure draw.bbox to display object labels

10 - dabble.fps
11 - draw.legend:
12 show: ["fps"]
13 - output.screen

6.3 Performance Speedup

The following charts show the speed up obtainable with the TensorRT models. The numbers were obtained from our
in-house testing with the actual devices.

6.3.1 NVIDIA Jetson Xavier NX with 8GB RAM

82 Chapter 6. Edge AI

PeekingDuck, Release developer

Fig. 1: Jetson Xavier NX specs used for testing:Page 83, 2

CPU: 6 cores (6MB L2 + 4MB L3) GPU: 384-core Volta, 48 Tensor cores RAM: 8 GB

6.3.2 NVIDIA Jetson Xavier AGX with 16GB RAM

Test Conditions

The following test conditions were followed:

- input.visual, the model of interest, and dabble.fps nodes were used to perform inference on videos
- 2 videos were used to benchmark each model, one with only 1 human (single), and the other with multiple
humans (multiple)
- Both videos are about 1 minute each, recorded at ~30 FPS, which translates to about 1,800 frames to process
per video
- 1280×720 (HD ready) resolution was used, as a bridge between 640×480 (VGA) of poorer quality webcams,
and 1920×1080 (Full HD) of CCTVs
- FPS numbers are averaged over 5 separate runs

2 NVIDIA Jetson Xavier NX Tech Specs
3 NVIDIA Jetson Xavier AGX Tech Specs

6.3. Performance Speedup 83

https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

PeekingDuck, Release developer

Fig. 2: Jetson Xavier AGX specs used for testing:3
CPU: 8 cores (8MB L2 + 4MB L3) GPU: 512-core Volta, 64 Tensor cores RAM: 16 GB

84 Chapter 6. Edge AI

PeekingDuck, Release developer

6.4 References

6.4. References 85

PeekingDuck, Release developer

86 Chapter 6. Edge AI

CHAPTER

SEVEN

USE CASES

Computer Vision (CV) problems come in various forms, and the gallery below shows common CV use cases which can
be tackled by PeekingDuck right out of the box. Areas include privacy protection, smart monitoring, and COVID-19
prevention and control. Users are encouraged to mix and match different PeekingDuck nodes and create your own
custom nodes for your specific use case - the only limit is your imagination!

7.1 Privacy Protection

7.1.1 Privacy Protection (Faces)

Overview

As organizations collect more data, there is a need to better protect the identities of individuals in public and pri-
vate places. Our solution performs face anonymization, and can be used to comply with the General Data Protection
Regulation (GDPR) or other data privacy laws.

Our solution automatically detects and mosaics (or blurs) human faces. This is explained in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file pri-
vacy_protection_faces.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/privacy_protection_faces.yml>

87

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_faces.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_faces.yml

PeekingDuck, Release developer

How It Works

There are two main components to face anonymization:

1. Face detection, and

2. Face de-identification.

1. Face Detection

We use an open source face detection model known as MTCNN to identify human faces. This allows the application to
identify the locations of human faces in a video feed. Each of these locations is represented as a pair of x, y coordinates
in the form [𝑥1, 𝑦1, 𝑥2, 𝑦2], where (𝑥1, 𝑦1) is the top left corner of the bounding box, and (𝑥2, 𝑦2) is the bottom right.
These are used to form the bounding box of each human face detected. For more information on how to adjust the
MTCNN node, check out the MTCNN configurable parameters.

2. Face De-Identification

To perform face de-identification, we pixelate or gaussian blur the areas bounded by the bounding boxes.

Nodes Used

These are the nodes used in the earlier demo (also in privacy_protection_faces.yml):

nodes:
- input.visual:

source: 0
- model.mtcnn
- draw.mosaic_bbox
- output.screen

1. Face Detection Node

As mentioned, we use the MTCNN model for face detection. It is able to detect human faces with face masks. Please
take a look at the benchmarks of object detection models that are included in PeekingDuck if you would like to use a
different model or model type better suited to your use case.

2. Face De-Identification Nodes

You can mosaic or blur the faces detected using the draw.mosaic_bbox or draw.blur_bbox in the run config dec-
laration.

Fig. 1: De-identification with mosaic (left) and blur (right).

3. Adjusting Nodes

With regard to the MTCNN model, some common node behaviors that you might want to adjust are:

88 Chapter 7. Use Cases

https://arxiv.org/abs/1604.02878
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_faces.yml

PeekingDuck, Release developer

• min_size: Specifies in pixels the minimum height and width of a face to be detected. (default = 40) You may
want to decrease the minimum size to increase the number of detections.

• network_thresholds: Specifies the threshold values for the Proposal Network (P-Net), Refine Network (R-
Net), and Output Network (O-Net) in the MTCNN model. (default = [0.6, 0.7, 0.7]) Calibration is performed at
each stage in which bounding boxes with confidence scores less than the specified threshold are discarded.

• score_threshold: Specifies the threshold value in the final output. (default = 0.7) Bounding boxes with
confidence scores less than the specified threshold in the final output are discarded. You may want to lower
network_thresholds and score_threshold to increase the number of detections.

In addition, some common node behaviors that you might want to adjust for the dabble.mosaic_bbox and dabble.
blur_bbox nodes are:

• mosaic_level: Defines the resolution of a mosaic filter (𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡); the value corresponds to the number
of rows and columns used to create a mosaic. (default = 7) For example, the default value creates a 7× 7 mosaic
filter. Increasing the number increases the intensity of pixelization over an area.

• blur_level: Defines the standard deviation of the Gaussian kernel used in the Gaussian filter. (default = 50)
The higher the blur level, the greater the blur intensity.

7.1.2 Privacy Protection (License Plates)

Overview

Posting images or videos of our vehicles online might lead to others misusing our license plate numbers to reveal our
personal information. Our solution performs license plate anonymization, and can also be used to comply with the
General Data Protection Regulation (GDPR) or other data privacy laws.

Our solution automatically detects and blurs vehicles’ license plates. This is explained in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file pri-
vacy_protection_license_plates.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/privacy_protection_license_plates.yml>

7.1. Privacy Protection 89

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_license_plates.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_license_plates.yml

PeekingDuck, Release developer

How It Works

There are two main components to license plate anonymization:

1. License plate detection, and

2. License plate de-identification.

1. License Plate Detection

We use open-source object detection models under the YOLOv4 family to identify the locations of the license plates
in an image/video feed. Specifically, we offer the YOLOv4-tiny model, which is faster, and the YOLOv4 model, which
provides higher accuracy. The locations of detected license plates are returned as an array of coordinates in the form
[𝑥1, 𝑦1, 𝑥2, 𝑦2], where (𝑥1, 𝑦1) is the top left corner of the bounding box, and (𝑥2, 𝑦2) is the bottom right. These are
used to form the bounding box of each license plate detected. For more information on how to adjust the license plate
detector node, check out the license plate detector configurable parameters.

2. License Plate De-Identification

To perform license plate de-identification, the areas bounded by the bounding boxes are blurred using a Gaussian blur
function.

Nodes Used

These are the nodes used in the earlier demo (also in privacy_protection_license_plates.yml):

nodes:
- input.visual:

source: <path/to/video with cars>
- model.yolo_license_plate
- draw.blur_bbox
- output.screen

1. License Plate Detection Node

By default, model.yolo_license_plate uses the v4 model type to detect license plates. If faster inference speed is
required, the v4tiny model type can be used instead.

2. License Plate De-Identification Nodes

You can choose to mosaic or blur the detected license plate using the draw.mosaic_bbox or draw.blur_bbox node
in the run config declaration.

Fig. 2: De-identification with mosaic (left) and blur (right).

3. Adjusting Nodes

90 Chapter 7. Use Cases

https://arxiv.org/abs/2004.10934
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_license_plates.yml

PeekingDuck, Release developer

With regard to the YOLOv4 model, some common node configurations that you might want to adjust are:

• score_threshold: The bounding boxes with confidence score less than the specified score threshold are dis-
carded. (default = 0.1)

• iou_threshold: The overlapping bounding boxes above the specified Intersection over Union (IoU) threshold
are discarded. (default = 0.3)

In addition, some common node behaviors that you might want to adjust for the dabble.mosaic_bbox and dabble.
blur_bbox nodes are:

• mosaic_level: Defines the resolution of a mosaic filter (𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡); the value corresponds to the number
of rows and columns used to create a mosaic. (default = 7) For example, the default value creates a 7× 7 mosaic
filter. Increasing the number increases the intensity of pixelization over an area.

• blur_level: Defines the standard deviation of the Gaussian kernel used in the Gaussian filter. (default = 50)
The higher the blur level, the greater the blur intensity.

7.1.3 Privacy Protection (People & Computer Screens)

Overview

Videos and pictures often contain people and other sensitive visual information (e.g., the display on computer screens),
even though this information might not be needed at all for visual processing. Our solution performs full body
anonymization and computer screen blurring to protect the identities of individuals and the sensitive information on
computer screens. It can be used to comply with the General Data Protection Regulation (GDPR) or other data privacy
laws.

In this example use case, we want to count the number of people in the office, but also want to avoid compromising the
privacy of the office inhabitants or information displayed on computer screens.

Our solution automatically detects people, laptop and computer screens, and then blurs them. This is explained in the
How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file pri-
vacy_protection_people_screens.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/privacy_protection_people_screens.yml>

7.1. Privacy Protection 91

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_people_screens.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_people_screens.yml

PeekingDuck, Release developer

How It Works

There are 2 main components to our solution:

1. Person and computer screen segmentation, and

2. Person and computer screen blurring.

1. Person and Computer Screen Segmentation

We use an open source instance segmentation model known as Mask R-CNN to obtain the masks of persons, computer
screens and laptops. The masks are akin to the input frames or images, except that it only has a single channel and each
pixel on the mask is a binary of either 1 or 0, which indicates whether a specific class of object is present (1) or absent
(0) in a particular location of the image. For more information on how to adjust the mask_rcnn node, check out its
configurable parameters.

2. Person and Computer Screen Blurring

To blur the people and computer screens, we pixelate or gaussian blur the image pixels where the pixel values of the
relevant masks are equal to 1 (indicating presence of object).

Nodes Used

These are the nodes used in the earlier demo (also in privacy_protection_people_screens.yml):

nodes:
- input.visual:

source: <path/to/video>
- model.mask_rcnn:

detect: ["tv", "laptop"]
- draw.instance_mask:

effect: {blur: 50}
- model.mask_rcnn:

detect: ["person"]
- dabble.bbox_count
- draw.instance_mask:

effect: {blur: 50}
- draw.bbox:

show_labels: True
- draw.legend:

show: ["count"]
- output.screen

This config includes the use of two model.mask_rcnn and draw.instance_mask nodes to separate the detected instances
of “person” class from the “tv” and “laptop” classes, so that drawing and counting of bboxes are only performed on
the “person” class. This repetition is not required if only anonymization is performed.

1. Instance Segmentation Node

In this example use case, we used the Mask R-CNN model for instance segmentation. It can detect persons as well
as computer monitors. Please take a look at the benchmarks of instance segmentation models that are included in
PeekingDuck if you would like to use a different model or model type better suited to your use case.

2. People and Screens De-Identification Node

The detected people and screens are blurred using the draw.instance_mask node.

3. Object Counting Node

92 Chapter 7. Use Cases

https://arxiv.org/abs/1703.06870
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_people_screens.yml

PeekingDuck, Release developer

dabble.bbox_count counts the total number of detected bounding boxes. This node has no configurable parameters.

4. Display Bounding Box Node

Then we draw bounding boxes around the detected persons using the draw.bbox node.

5. Person Count Display Node

The total number of detected persons are shown using the draw.legend node.

6. Adjusting Nodes

With regard to the Mask R-CNN model, some common node behaviors that you might want to adjust are:

• model_type: Defines the type of backbones to be used.

• score_threshold: Bounding boxes with classification score below the threshold will be discarded.

• mask_threshold: The confidence threshold for binarizing the masks’ pixel values, whether an object is detected
at a particular pixel.

In addition, some common node behaviors that you might want to adjust for the draw.instance_mask node are:

• blur: Blurs the area using this value as the “blur_kernel_size” parameter. Larger values gives more intense
blurring.

• mosaic: Mosaics the area using this value as the resolution of a mosaic filter (𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡). The value
corresponds to the number of rows and columns used to create a mosaic. For example, the setting (mosaic:
25) creates a 25× 25 mosaic filter. Increasing the number increases the intensity of pixelation over an area.

Privacy Protection (Faces) Privacy Protection (License Plates)

Privacy Protection (People and Screens)

7.2 Smart Monitoring

7.2.1 Crowd Counting

Overview

In Computer Vision (CV), crowd counting refers to the technique of counting or estimating the number of people in a
crowd. This can be used to estimate the number of people attending an event, monitor crowd levels and prevent human
stampedes.

Our solution utilizes CSRNet to estimate the size of a crowd. In addition, it generates a heat map that can be used to
pinpoint possible bottlenecks at a venue. This is explained in the How It Works section.

7.2. Smart Monitoring 93

privacy_protection_faces.html
privacy_protection_license_plates.html
privacy_protection_people_screens.html

PeekingDuck, Release developer

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file crowd_counting.yml
as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/crowd_counting.yml>

You may like to try it on this sample video.

How It Works

There are two main components to our solution:

1. Crowd counting, and

2. Heat map generation.

1. Crowd Counting

We use an open source crowd counting model known as CSRNet to predict the number of people in a sparse or dense
crowd. The solution uses the sparse crowd model by default and can be configured to use the dense crowd model if
required. The dense and sparse crowd models were trained using data from ShanghaiTech Part A and Part B respectively.

As a rule of thumb, you might want to use the dense crowd model if the people in a given image or video frame are
packed shoulder to shoulder, e.g., stadiums. For more information on how to adjust the CSRNet node, check out its
configurable parameters.

2. Heat Map Generation (Optional)

We generate a heat map using the density map estimated by the model. Areas that are more crowded are highlighted
in red while areas that are less crowded are highlighted in blue.

Nodes Used

These are the nodes used in the earlier demo (also in crowd_counting.yml):

nodes:
- input.visual:

source: <path/to/video with crowd>
- model.csrnet:

model_type: dense
- draw.heat_map
- draw.legend:

show: ["count"]
- output.screen

1. Crowd Counting Node

As mentioned, we use CSRNet to estimate the size of a crowd. As the models were trained to recognize congested
scenes, the estimates are less accurate if the number of people is low, i.e., below ten. In such scenarios, you should
consider using the object detection models included in our repo.

94 Chapter 7. Use Cases

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/crowd_counting.yml
https://storage.googleapis.com/peekingduck/videos/large_crowd.mp4
https://arxiv.org/pdf/1802.10062.pdf
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/crowd_counting.yml

PeekingDuck, Release developer

2. Heat Map Generation Node (Optional)

The heat map generation node superimposes a heat map over a given image or video frame.

3. Adjusting Nodes

Some common node behaviors that you might want to adjust are:

• model_type: This specifies the model to be used, i.e., sparse or dense. By default, our solution uses the
sparse crowd model. As a rule of thumb, you might want to use the dense crowd model if the people in a given
image or video frame are packed shoulder to shoulder, e.g., stadiums.

• width: This specifies the input width. By default, the width of an image will be resized to 640 for inference. The
height of the image will be resized proportionally to preserve its aspect ratio. In general, decreasing the width
of an image will improve inference speed. However, this might impact the accuracy of the model.

7.2.2 Object Counting (Present)

Overview

Object counting (present) is a solution within PeekingDuck’s suite of smart monitoring use cases. It counts the number
of objects detected by PeekingDuck’s object detection models at the present point in time, and calculates statistics such
as the cumulative average, maximum and minimum for further analytics. Up to 80 types of objects can be counted, in-
cluding humans, vehicles, animals and even household objects. Thus, this can be applied to a wide variety of scenarios,
from traffic control to counting livestock.

See also:

For advanced counting tasks such as counting tracked objects over time or counting within specific zones, refer to
PeekingDuck’s other smart monitoring use cases.

In the GIF above, the count and statistics change as the number of detected persons change. This is explained in the
How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file ob-
ject_counting_present.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/object_counting_present.yml>

7.2. Smart Monitoring 95

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_present.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_present.yml

PeekingDuck, Release developer

How It Works

There are 3 main components to this solution:

1. Object detection,

2. Count detections, and

3. Calculate statistics.

1. Object Detection

We use an open source object detection model known as YOLOv4 and its smaller and faster variant known as YOLOv4-
tiny to identify the bounding boxes of chosen objects we want to detect. This allows the application to identify where
objects are located within the video feed. The location is returned as two x, y coordinates in the form [𝑥1, 𝑦1, 𝑥2, 𝑦2],
where (𝑥1, 𝑦1) is the top left corner of the bounding box, and (𝑥2, 𝑦2) is the bottom right. These are used to form the
bounding box of each object detected. For more information on how to adjust the yolo node, check out its configurable
parameters.

2. Count Detections

To count the number of objects detected, we simply take the sum of the number of bounding boxes detected for the
object category.

3. Calculate Statistics

The cumulative average, minimum and maximum over time is calculated from the count from each frame.

Nodes Used

These are the nodes used in the earlier demo (also in object_counting_present.yml):

nodes:
- input.visual:

source: 0
- model.yolo:

detect: ["person"]
- dabble.bbox_count
- dabble.statistics:

identity: count
- draw.bbox
- draw.legend:

show: ["count", "cum_avg", "cum_max", "cum_min"]
- output.screen

1. Object Detection Node

By default, the node uses the YOLOv4-tiny model for object detection, set to detect people. Please take a look at the
benchmarks of object detection models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Object Counting Node

dabble.bbox_count takes the detected bounding boxes and outputs the total count of bounding boxes. This node has
no configurable parameters.

3. Statistics Node

96 Chapter 7. Use Cases

https://arxiv.org/abs/2004.10934
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_present.yml

PeekingDuck, Release developer

The dabble.statistics node calculates the cum_avg, cum_max and cum_min from the output of the object counting
node.

4. Adjusting Nodes

For the object detection model used in this demo, please see the documentation for adjustable behaviors that can
influence the result of the object counting node.

For more adjustable node behaviors not listed here, check out the API Documentation.

7.2.3 Object Counting (Over Time)

Overview

Object counting over time involves detecting and tracking unique objects, and incrementing the count when new objects
appear. When applied to the vehicles in the GIF below, it can count the total number of vehicles passing by over a period
of time, aiding transportation planning by identifying periods of peak traffic. This use case is not limited to just vehicles,
as up to 80 types of objects can be monitored (including animals), giving rise to a wide breadth of potential applications.

See also:

While it is also possible to count people over time with this use case, more accurate results can be obtained by using
the People Counting (Over Time) use case.

See also:

If you wish to only count the number objects at an instance rather than a cumulative total over a period of time, the
simpler Object Counting (Present) use case without requiring object tracking would be more suitable.

Object counting over time is achieved by detecting the objects using an object detection model, then tracking each
unique object. As a new object appears, the number of counted objects is incremented. This is explained in the How It
Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file ob-
ject_counting_over_time.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/object_counting_over_time.yml>

7.2. Smart Monitoring 97

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_over_time.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_over_time.yml

PeekingDuck, Release developer

How It Works

Object counting over time comprises three main components:

1. Object detection,

2. Tracking the outputs of object detection, and

3. Incrementing the count.

1. Object Detection

The EfficientDet model is used here to predict the bounding boxes of objects of interest. This allows the application to
identify where each object is located within the video feed. The location is returned as a pair of x, y coordinates in the
form [𝑥1, 𝑦1, 𝑥2, 𝑦2], where (𝑥1, 𝑦1) is the top-left corner of the bounding box, and (𝑥2, 𝑦2) is the bottom right.

2. Tracking the Outputs of Object Detection

An Intersection over Union (IoU) tracker adapted from this paper is used on the bounding boxes from the object detec-
tion model to produce tracked identities (IDs) for each bounding box. The IoU tracker continues a track by associating
the detection with the highest IoU to the last detection in the previous frame. For example, Car 8 in frame n continues
to be tracked as Car 8 in frame n+1 as both instances of Car 8 are within close proximity (high IoU) of each other.
This assumes that the object detector correctly predicts a bounding box per frame for each object to be tracked, and
also assumes that the frame rate of the video is high enough to allow unambigious IoU overlaps between consecutive
frames.

Another available option is the Minimum Output Sum of Squared Error (MOSSE) tracker which we have adapted
from the OpenCV package. It is a correlation filter based tracker which uses Fast Fourier Transform (FFT) to perform
operations in the frequency domain, reducing computational complexity. More details can be found from this paper.

3. Incrementing the Count

Monotonically increasing integer IDs beginning from 0 are assigned to new unique objects. For example, the first
tracked object is assigned an ID of 0, the second tracked object is assigned an ID of 1, and so on. Thus the total number
of unique objects that have appeared in the entire duration is simply the cumulative maximum.

Nodes Used

These are the nodes used in the earlier demo (also in object_counting_over_time.yml):

nodes:
- input.visual:

source: <path/to/video with cars>
- model.efficientdet:

detect: ["car"]
- dabble.tracking:

tracking_type: "iou"
- dabble.statistics:

maximum: obj_attrs["ids"]
- draw.bbox
- draw.tag:

show: ["ids"]
- draw.legend:

show: ["cum_max"]
- output.screen

98 Chapter 7. Use Cases

http://elvera.nue.tu-berlin.de/files/1517Bochinski2017.pdf
https://www.cs.colostate.edu/~draper/papers/bolme_cvpr10.pdf
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_over_time.yml

PeekingDuck, Release developer

1. Object Detection Node

In the demo, the model.efficientdet node is used for object detection, set to detect cars. As mentioned in the
earlier How It Works section, for object tracking to work well, the upstream object detector needs to produce predictions
which are as accurate as possible. Please take a look at the benchmarks of object detection models that are included in
PeekingDuck if you would like to use a different model or model type better suited to your use case.

2. Tracking Node

The dabble.tracking node used here is not an AI model but uses heuristics, hence it falls under the category of
dabble nodes instead of model nodes. It needs to be paired with an upstream object detector node, but this also gives
it a key advantage - it can track any of the 80 types of detectable objects. In contrast, the People Counting (Over Time)
use case uses a single model node purpose-built for both human detection and tracking, giving it more accuracy but
limiting its usage to only humans.

3. Statistics Node

The dabble.statistics node retrieves the maximum detected ID for each frame. If the ID exceeds the previous
maximum, the cum_max (cumulative maximum) is updated. As monotonically increasing integer IDs beginning from
0 are assigned to new unique objects, the maximum ID is equal to the total number of unique objects over time.

4. Adjusting Nodes

Some common node behaviors that you might need to adjust are:

For model.efficientdet:

• model_type: 0, 1, 2, 3, or 4. The larger the number, the higher the accuracy, at the cost of inference speed.

• detect: Object class IDs to be detected. Refer to Object Detection IDs table for the class IDs for each model.

For dabble.tracking:

• tracking_type: Choose either ["iou", "mosse"], described earlier in the How It Works section.

For more adjustable node behaviors not listed here, check out the API Documentation.

Counting Objects Within Zones

It is possible to extend this use case with the Zone Counting use case. For example, if the road were a dual carriageway
and we are only interested counting the vehicles on one side of the road, we could split the video into 2 different zones
and only count the vehicles within the chosen zone. An example of how this can be done is given in the Tracking People
within a Zone tutorial.

7.2.4 People Counting (Over Time)

Overview

People counting over time involves detecting and tracking different persons, and incrementing the count when a new
person appears. This use case can reduce dependency on manual counting, and be applied to areas such as retail
analytics, queue management, or occupancy monitoring.

Our solution automatically detects, tracks and counts people over time. This is explained in the How It Works section.

7.2. Smart Monitoring 99

PeekingDuck, Release developer

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file peo-
ple_counting_over_time.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/people_counting_over_time.yml>

You may like to try it on this sample video.

How It Works

People counting over time comprises three main components:

1. Human detection,

2. Appearance embedding tracking, and

3. Incrementing the count.

1. Human Detection

We use an open source detection model known as JDE to detect persons. JDE has been trained on pedestrian detection
and person search datasets. This allows the application to identify the locations of persons in a video feed. Each of
these locations is represented as a pair of x, y coordinates in the form [𝑥1, 𝑦1, 𝑥2, 𝑦2], where (𝑥1, 𝑦1) is the top left
corner of the bounding box, and (𝑥2, 𝑦2) is the bottom right. These are used to form the bounding box of each person
detected. For more information on how to adjust the JDE node, check out the JDE configurable parameters.

2. Appearance Embedding Tracking

To learn appearance embeddings for tracking, a metric learning algorithm with triplet loss is used. Observations are
assigned to tracklets using the Hungarian algorithm. The Kalman filter is used to smooth the trajectories and predict the
locations of previous tracklets in the current frame. The model outputs an ID for each detection based on the appearance
embedding learned.

3. Incrementing the Count

Monotonically increasing integer IDs beginning from 0 are assigned to new unique persons. For example, the first
tracked person is assigned an ID of 0, the second tracked person is assigned an ID of 1, and so on. Thus the total
number of unique persons that have appeared in the entire duration is simply the cumulative maximum.

Nodes Used

These are the nodes used in the earlier demo (also in people_counting_over_time.yml):

nodes:
- input.visual:

source: <path/to/video with people>
- model.jde
- dabble.statistics:

maximum: obj_attrs["ids"]
- draw.bbox

(continues on next page)

100 Chapter 7. Use Cases

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/people_counting_over_time.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/people_counting_over_time.yml
https://storage.googleapis.com/peekingduck/videos/people_walking.mp4
https://arxiv.org/abs/1909.12605
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/people_counting_over_time.yml

PeekingDuck, Release developer

(continued from previous page)

- draw.tag:
show: ["ids"]

- draw.legend:
show: ["cum_max"]

- output.screen

1. JDE Node

This node employs a single network to simultaneously output detection results and the corresponding appearance
embeddings of the detected boxes. Therefore JDE stands for Joint Detection and Embedding. Please take a look at the
benchmarks of object tracking models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Statistics Node

The dabble.statistics node retrieves the maximum detected ID for each frame. If the ID exceeds the previous
maximum, the cum_max (cumulative maximum) is updated. As monotonically increasing integer IDs beginning from
0 are assigned to new unique persons, the maximum ID is equal to the total number of unique persons over time.

3. Adjusting Nodes

With regard to the model.jde node, some common behaviors that you might want to adjust are:

• iou_threshold: Specifies the threshold value for Intersection over Union of detections (default = 0.5).

• score_threshold: Specifies the threshold values for the detection confidence (default = 0.5). You may want
to lower this value to increase the number of detections.

• nms_threshold: Specifies the threshold value for non-maximal suppression (default = 0.4). You may want to
lower this value to increase the number of detections.

• min_box_area: Specifies the minimum value for area of detected bounding box. Calculated by 𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡
(default = 200).

• track_buffer: Specifies the threshold to remove track if track is lost for more frames than this value (default
= 30).

Counting People Within Zones

It is possible to extend this use case with the Zone Counting use case. For example, if a CCTV footage shows the
entrance of a mall as well as a road, and we are only interested to apply people counting to the mall entrance, we could
split the video into 2 different zones and only count the people within the chosen zone. An example of how this can be
done is given in the Tracking People within a Zone tutorial.

7.2.5 Zone Counting

Overview

Zone counting creates different zones within a single image and counts the number of objects within each zone sepa-
rately. This is useful in many applications, such as counting vehicles travelling on one side of a road, or counting the
shoppers entering a mall.

See also:

To only count objects within a single zone and ignore all other objects, see the Tracking People within a Zone tutorial.

7.2. Smart Monitoring 101

PeekingDuck, Release developer

Zone counting is done by counting the number of objects detected by the object detection models that fall within the
specified zones. For example, we can count the number of people in the blue and red zones, as shown in the GIF above.
This is explained in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file zone_counting.yml
as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/zone_counting.yml>

How It Works

There are three main components to obtain the zone counts:

1. The detections from the object detection model, which are the bounding boxes,

2. The bottom midpoint of the bounding boxes, derived from the bounding boxes, and

3. The zones, which can be set in the dabble.zone_count configurable parameters.

1. Object Detection

We use an open source object detection model known as YOLOv4 and its smaller and faster variant known as YOLOv4-
tiny to identify the bounding boxes of objects we want to detect. This allows the application to identify where objects
are located within the video feed. The location is returned as a pair of x, y coordinates in the form [𝑥1, 𝑦1, 𝑥2, 𝑦2],
where (𝑥1, 𝑦1) is the top left corner of the bounding box, and (𝑥2, 𝑦2) is the bottom right. These are used to form the
bounding box of each object detected. For more information on how to adjust the yolo node, check out its configurable
parameters.

2. Bounding Box to Bottom Midpoint

Given the top left (𝑥1, 𝑦1) and bottom right (𝑥2, 𝑦2) coordinates of each bounding box, the bottom midpoint (𝑥𝑏𝑚, 𝑦𝑏𝑚)
can be computed by taking lowest y coordinate 𝑦𝑏𝑚 = 𝑦2, and the midpoint of the x coordinates 𝑥𝑏𝑚 = (𝑥1 + 𝑥2)/2.

We found that using the bottom midpoint is the most efficient way to tell if something is in a specified zone. We attribute
this to the use of the top-down or angled camera footages, which are commonly found in the use cases. The bottom
midpoints of the bounding boxes usually correspond to the locations of the objects in these footages.

3. Zones

Zones are created by specifying the x, y coordinates of all the corner points that form the area of the zone in a clockwise
direction. The coordinates can be in either fractions of the resolution or pixels. As an example, blue zone in the zone
counting GIF was created using the following zone:

[[0, 0], [0.6, 0], [0.6, 1], [0, 1]]

102 Chapter 7. Use Cases

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/zone_counting.yml
https://arxiv.org/abs/2004.10934

PeekingDuck, Release developer

Given a resolution of 1280 by 720, these correspond to the top-left of the image, 60% of the length at the top of the
image, 60% of the length at the bottom of the image, and the bottom-left of the image. These points form the rectangular
blue zone in a clockwise direction.

Note that because the x, y coordinates are fractions of the image resolution, the resolution config for dabble.
zone_count needs to be set correctly.

For finer control over the exact coordinates, the pixel coordinates can be used instead. Using the same example, the
blue zone can be created using the following zone configuration:

[[0, 0], [768, 0], [768, 720], [0, 720]]

When using pixel coordinates, the resolution is not needed. However, users should check to ensure that the pixel
coordinates given fall within the image resolution so that the zone will work as intended.

Elaboration for this adjustment can be found the “4. Adjusting Nodes” section.

Note: Zones do not have to be rectangular in shape. They can be of any polygonal shape, dictated by the number and
position of the x, y coordinates set in a zone.

4. Zone Counts

Given the bottom midpoints of all detected objects, we check if the points fall within the areas of the specified zones.
If it falls inside any zone, an object count is added for that specific zone. This continues until all objects detected are
accounted for, which gives the final count of objects in each specified zone.

Nodes Used

These are the nodes used in the earlier demo (also in zone_counting.yml):

nodes:
- input.visual:

source: 0
- model.yolo:

detect: ["person"]
- dabble.bbox_to_btm_midpoint
- dabble.zone_count:

resolution: [1280, 720] # Adjust this to your camera's input resolution
zones: [

(continues on next page)

7.2. Smart Monitoring 103

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/zone_counting.yml

PeekingDuck, Release developer

(continued from previous page)

[[0, 0], [0.6, 0], [0.6, 1], [0, 1]],
[[0.6, 0], [1, 0], [1, 1], [0.6, 1]]
]

- draw.bbox
- draw.btm_midpoint
- draw.zones
- draw.legend:

show: ["zone_count"]
- output.screen

1. Object Detection Node

By default, the node uses the YOLOv4-tiny model for object detection, set to detect people. Please take a look at the
benchmarks of object detection models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Bottom Midpoint Node

The bottom midpoint node is called by including dabble.bbox_to_btm_midpoint in the pipeline config declaration.
This outputs the bottom midpoints of all detected bounding boxes. The node has no configurable parameters.

3. Zone Counting Node

The zone counting node is called by including dabble.zone_count in the run config declaration. This uses the bottom
midpoints of all detected bounding boxes and outputs the number of object counts in each specified zone. The node
configurable parameters can be found below.

4. Adjusting Nodes

The zone counting detections depend on the configuration set in the object detection models, such as the type of object
to detect, etc. For the object detection model used in this demo, please see the yolo node documentation for adjustable
behaviors that can influence the result of the zone counting node.

With regards to the zone counting node, some common node behaviors that you might need to adjust are:

• resolution: If you are planning to use fractions to set the coordinates for the area of the zone, the resolution
should be set to the image/video/livestream resolution used.

• zones: Used to specify the different zones which you would like to set. The coordinates for each zone are given
in a list in a clockwise order. See the Nodes Used section on how to properly configure multiple zones.

For more adjustable node behaviors not listed here, check out the API Documentation.

Zone Counting Crowd Counting

Object Counting (Over Time) People Counting (Over Time)

Object Counting (Present)

104 Chapter 7. Use Cases

zone_counting.html
crowd_counting.html
object_counting_over_time.html
people_counting_over_time.html
object_counting_present.html

PeekingDuck, Release developer

7.3 COVID-19 Prevention and Control

7.3.1 Face Mask Detection

Overview

Wearing of face masks in public places can help prevent the spread of COVID-19 and other infectious diseases. AI
Singapore has developed a solution that checks whether or not a person is wearing a face mask. This can be used in
places such as malls or shops to ensure that visitors adhere to the guidelines.

We have trained a custom YOLOv4 model to detect whether or not a person is wearing a face mask. This is explained
in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file
face_mask_detection.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/face_mask_detection.yml>

How It Works

The main component is the detection of face mask using the custom YOLOv4 model.

Face Mask Detection

We use an open source object detection model known as YOLOv4 and its smaller and faster variant known as YOLOv4-
tiny to identify the bounding boxes of human faces with and without face masks. This allows the application to identify
the locations of faces and their corresponding classes (no_mask = 0 or mask = 1) in a video feed. Each of these
locations are represented as a pair of x, y coordinates in the form [𝑥1, 𝑦1, 𝑥2, 𝑦2], where (𝑥1, 𝑦1) is the top-left corner
of the bounding box, and (𝑥2, 𝑦2) is the bottom right. These are used to form the bounding box of each human face
detected.

The model.yolo_face node detects human faces with and without face masks using the YOLOv4-tiny model by
default. The classes are differentiated by the labels and the colors of the bounding boxes when multiple faces are
detected. For more information on how to adjust the yolo_face node, check out its configurable parameters.

7.3. COVID-19 Prevention and Control 105

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/face_mask_detection.yml
https://arxiv.org/abs/2004.10934

PeekingDuck, Release developer

Nodes Used

These are the nodes used in the earlier demo (also in face_mask_detection.yml):

nodes:
- input.visual:

source: 0
- model.yolo_face
- draw.bbox:

show_labels: true
- output.screen

1. Face Mask Detection Node

The model.yolo_face node is used for face detection and to classify if the face is masked or unmasked. To simply
detect faces without needing to classify if the face is masked, you can also consider the model.mtcnn node.

2. Adjusting Nodes

Some common node behaviors that you might want to adjust are:

• model_type: This specifies the variant of YOLOv4 to be used. By default, the v4tiny model is used, but for
better accuracy, you may want to try the v4 model.

• detect: This specifies the class to be detected where no_mask = 0 and mask = 1. By default, the model detects
faces with and without face masks (default = [0, 1]).

• score_threshold: This specifies the threshold value. Bounding boxes with confidence score lower than the
threshold are discarded. You may want to lower the threshold value to increase the number of detections.

7.3.2 Group Size Checking

Overview

As part of COVID-19 measures, the Singapore Government has set restrictions on the group sizes of social gatherings.
AI Singapore has developed a vision-based group size checker that checks if the group size limit has been violated.
This can be used in many places, such as in malls to ensure that visitors adhere to guidelines, or in workplaces to ensure
employees’ safety.

To check if individuals belong to a group, we check if the physical distance between them is close. The most accurate
way to measure distance is to use a 3D sensor with depth perception, such as a RGB-D camera or a LiDAR. However,
most cameras such as CCTVs and IP cameras usually only produce 2D videos. We developed heuristics that are able to
give an approximate measure of physical distance from 2D videos, addressing this limitation. This is further elaborated
in the How It Works section.

106 Chapter 7. Use Cases

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/face_mask_detection.yml
https://aisingapore.org/2021/05/covid-19-stay-vigilant-with-group-size-checker
https://en.wikipedia.org/wiki/Lidar

PeekingDuck, Release developer

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file
group_size_checking.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/group_size_checking.yml>

How It Works

There are three main components to obtain the distance between individuals:

1. Human pose estimation using AI,

2. Depth and distance approximation, and

3. Linking individuals to groups.

1. Human Pose Estimation

We use an open source human pose estimation model known as PoseNet to identify key human skeletal points. This
allows the application to identify where individuals are located within the video feed. The coordinates of the various
skeletal points will then be used to determine the distance between individuals.

2. Depth and Distance Approximation

To measure the distance between individuals, we have to estimate the 3D world coordinates from the keypoints in 2D
coordinates. To achieve this, we compute the depth 𝑍 from the x, y coordinates using the relationship below:

where:

• 𝑍 = depth or distance of scene point from camera

• 𝑓 = focal length of camera

7.3. COVID-19 Prevention and Control 107

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/group_size_checking.yml
https://arxiv.org/abs/1505.07427

PeekingDuck, Release developer

• 𝑦 = y position of image point

• 𝑌 = y position of scene point

𝑌1 − 𝑌2 is a reference or “ground truth length” that is required to obtain the depth. After numerous experiments, it
was decided that the optimal reference length would be the average height of a human torso (height from human hip
to center of face). Width was not used as this value has high variance due to the different body angles of an individual
while facing the camera.

3. Linking Individuals to Groups

Once we have the 3D world coordinates of the individuals in the video, we can compare the distances between each
pair of individuals. If they are close to each other, we assign them to the same group. This is a dynamic connectivity
problem and we use the quick find algorithm to solve it.

Nodes Used

These are the nodes used in the earlier demo (also in group_size_checking.yml):

nodes:
- input.visual:

source: 0
- model.posenet
- dabble.keypoints_to_3d_loc:

focal_length: 1.14
torso_factor: 0.9

- dabble.group_nearby_objs:
obj_dist_threshold: 1.5

- dabble.check_large_groups:
group_size_threshold: 2

- draw.poses
- draw.group_bbox_and_tag
- output.screen

1. Pose Estimation Model

By default, we are using the PoseNet model with a ResNet backbone for pose estimation. Please take a look at the
benchmarks of pose estimation models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Adjusting Nodes

Some common node behaviors that you might need to adjust are:

• focal_length & torso_factor: We calibrated these settings using a Logitech c170 webcam, with 2 indi-
viduals of heights about 1.7m. We recommend running a few experiments on your setup and calibrate these
accordingly.

• obj_dist_threshold: The maximum distance between 2 individuals, in meters, for them to be considered to
be part of a group.

• group_size_threshold: The acceptable group size limit.

For more adjustable node behaviors not listed here, check out the API Documentation.

3. Using Object Detection (Optional)

It is possible to use object detection models instead of pose estimation. To do so, replace the model node accordingly,
and replace the node dabble.keypoints_to_3d_loc with dabble.bbox_to_3d_loc. The reference or “ground
truth length” in this case would be the average height of a human, multiplied by a small factor.

108 Chapter 7. Use Cases

https://regenerativetoday.com/union-find-data-structure-quick-find-algorithm
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/group_size_checking.yml

PeekingDuck, Release developer

You might need to use this approach if running on a resource-limited device such as a Raspberry Pi. In this situation,
you’ll need to use the lightweight models; we find lightweight object detectors are generally better than lightweight
pose estimation models in detecting humans.

The trade-off here is that the estimated distance between individuals will be less accurate. This is because for object
detectors, the bounding box will be compared with the average height of a human, but the bounding box height decreases
if the person is sitting down or bending over.

Using with Social Distancing

To combat COVID-19, individuals are encouraged to maintain physical distance from each other. We’ve developed a
social distancing tool that checks if individuals are too close to each other.

The nodes for social distancing can be stacked with group size checker, to perform both at the same time. Check out
the Social Distancing use case to find out which nodes are used.

7.3.3 Social Distancing

Overview

To support the fight against COVID-19, AI Singapore developed a solution to encourage individuals to maintain physical
distance from each other. This can be used in many places, such as in malls to encourage social distancing in long
queues, or in workplaces to ensure employees’ well-being. An example of the latter is HP Inc., which collaborated with
us to deploy this solution on edge devices in its manufacturing facility in Singapore.

The most accurate way to measure distance is to use a 3D sensor with depth perception, such as a RGB-D camera or
a LiDAR. However, most cameras such as CCTVs and IP cameras usually only produce 2D videos. We developed
heuristics that are able to give an approximate measure of physical distance from 2D videos, addressing this limitation.
This is explained in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file social_distancing.yml
as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/social_distancing.yml>

7.3. COVID-19 Prevention and Control 109

https://aisingapore.org/2020/06/hp-social-distancing
https://en.wikipedia.org/wiki/Lidar
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/social_distancing.yml

PeekingDuck, Release developer

How It Works

There are two main components to obtain the distance between individuals: #. Human pose estimation using AI, and
#. Depth and distance approximation using heuristics.

1. Human Pose Estimation

We use an open source human pose estimation model known as PoseNet to identify key human skeletal points. This
allows the application to identify where individuals are located within the video feed. The coordinates of the various
skeletal points will then be used to determine the distance between individuals.

2. Depth and Distance Approximation

To measure the distance between individuals, we have to estimate the 3D world coordinates from the keypoints in 2D
coordinates. To achieve this, we compute the depth 𝑍 from the x, y coordinates using the relationship below:

where:

• 𝑍 = depth or distance of scene point from camera

• 𝑓 = focal length of camera

• 𝑦 = y position of image point

• 𝑌 = y position of scene point

𝑌1 − 𝑌2 is a reference or “ground truth length” that is required to obtain the depth. After numerous experiments, it
was decided that the optimal reference length would be the average height of a human torso (height from human hip
to center of face). Width was not used as this value has high variance due to the different body angles of an individual
while facing the camera.

Once we have the 3D world coordinates of the individuals in the video, we can compare the distances between each
pair of individuals and check if they are too close to each other.

110 Chapter 7. Use Cases

https://arxiv.org/abs/1505.07427

PeekingDuck, Release developer

Nodes Used

These are the nodes used in the earlier demo (also in social_distancing.yml):

nodes:
- input.visual:

source: 0
- model.posenet
- dabble.keypoints_to_3d_loc:

focal_length: 1.14
torso_factor: 0.9

- dabble.check_nearby_objs:
near_threshold: 1.5
tag_msg: "TOO CLOSE!"

- draw.poses
- draw.tag:

show: ["flags"]
- output.screen

1. Pose Estimation Model

By default, we are using the PoseNet model with a ResNet backbone for pose estimation. Please take a look at the
benchmarks of pose estimation models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Adjusting Nodes

Some common node behaviors that you might need to adjust are:

• focal_length & torso_factor: We calibrated these settings using a Logitech c170 webcam, with 2 indi-
viduals of heights about 1.7m. We recommend running a few experiments on your setup and calibrate these
accordingly.

• tag_msg: The message to show when individuals are too close.

• near_threshold: The minimum acceptable distance between 2 individuals, in meters. For example, if the
threshold is set at 1.5m, and 2 individuals are standing 2.0m apart, tag_msg doesn’t show as they are standing
further apart than the threshold. The larger this number, the stricter the social distancing.

For more adjustable node behaviors not listed here, check out the API Documentation.

3. Using Object Detection (Optional)

It is possible to use object detection models instead of pose estimation. To do so, replace the model node accordingly,
and replace the dabble.keypoints_to_3d_loc node with dabble.bbox_to_3d_loc. The reference or “ground
truth length” in this case would be the average height of a human, multiplied by a small factor.

You might need to use this approach if running on a resource-limited device such as a Raspberry Pi. In this situa-
tion, you’ll need to use the lightweight models, and we find that lightweight object detectors are generally better than
lightweight pose estimation models in detecting humans.

The trade-off here is that the estimated distance between individuals will be less accurate. This is because for object
detectors, the bounding box will be compared with the average height of a human, but the bounding box height decreases
if the person is sitting down or bending over.

7.3. COVID-19 Prevention and Control 111

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/social_distancing.yml

PeekingDuck, Release developer

Using with Group Size Checker

As part of COVID-19 measures, the Singapore Government has set restrictions on the group sizes of social gatherings.
We’ve developed a group size checker that checks if the group size limit has been violated.

The nodes for group size checker can be stacked with social distancing, to perform both at the same time. Check out
the Group Size Checking use case to find out which nodes are used.

Social Distancing Group Size Checking

Face Mask Detection

112 Chapter 7. Use Cases

https://aisingapore.org/2021/05/covid-19-stay-vigilant-with-group-size-checker
social_distancing.html
group_size_checking.html
face_mask_detection.html

CHAPTER

EIGHT

FAQ AND TROUBLESHOOTING

8.1 How can I post-process and visualize model outputs?

The common output of all model nodes is bboxes. bboxes can be used for subsequent actions like counting (dabble.
bbox_count), drawing (draw.bbox), tagging (draw.tag), etc. You can also create custom nodes which take bboxes
as an input to visualize your results.

8.2 How can I dynamically use all prior outputs as the input at run
time?

Specifying “all” as the input allows the node to receive all prior outputs as the input. This is used by nodes such as
draw.legend and output.csv_writer.

8.3 How do I debug custom nodes?

You can add code in custom nodes to print the contents of their inputs. For more info, please see the tutorial on
debugging.

8.4 Why does input.visual progress stop before 100%?

input.visual provides progress information if it is able to get a total frame count for the input. This number is
obtained using opencv’s CV_CAP_PROP_FRAME_COUNT API, which attempts to estimate the total frame count using
the input media’s metadata duration and FPS. However, the total frame count is only an estimate. It is not guaranteed to
be accurate because it is affected by potential errors, such as frame corruption, video decoder failure, inaccurate FPS,
and rounding errors.

113

PeekingDuck, Release developer

8.5 Why does the output screen flash briefly and disappear on my
second run?

If you are running PeekingDuck on the Windows Subsystem for Linux (WSL), this erroneous behavior may be caused
by a WSL bug where the key buffer is not flushed. Please refer to this GitHub issue for more details.

114 Chapter 8. FAQ and Troubleshooting

https://github.com/aisingapore/PeekingDuck/issues/630

CHAPTER

NINE

GLOSSARY

The following are built-in data types recognized by PeekingDuck nodes. Users can define custom data types when
working with custom nodes.

(input) all (Any)
This data type contains all the outputs from preceding nodes, granting a large degree of flexibility to nodes that
receive it. Examples of such nodes include draw.legend , dabble.statistics, and output.csv_writer.

bboxes (numpy.ndarray)
A NumPy array of shape (𝑁, 4) containing normalized bounding box coordinates of 𝑁 detected objects. Each
bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2) where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-
right corner. The order corresponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray)
A NumPy array of shape (𝑁) containing strings representing the labels of detected objects. The order corre-
sponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray)
A NumPy array of shape (𝑁) containing confidence scores [0, 1] of detected objects. The order corresponds to
bboxes and bbox_labels.

btm_midpoint (List[Tuple[int, int]])
A list of tuples each representing the (𝑥, 𝑦) coordinates of the bottom middle of a bounding box for use in zone
analytics. The order corresponds to bboxes.

count (int)
An integer representing the number of counted objects.

cum_avg (float)
Cumulative average of an attribute over time.

cum_max (float | int)
Cumulative maximum of an attribute over time.

cum_min (float | int)
Cumulative minimum of an attribute over time.

density_map (numpy.ndarray)
A NumPy array of shape (𝐻,𝑊) representing the number of persons per pixel. 𝐻 and 𝑊 are the height and
width of the input image, respectively. The sum of the array is the estimated total number of people.

filename (str)
The filename of video/image being read.

fps (float)
A float representing the Frames Per Second (FPS) when processing a live video stream or a recorded video.

115

PeekingDuck, Release developer

img (numpy.ndarray)
A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the image data in BGR format.

keypoints (numpy.ndarray)
A NumPy array of shape (𝑁,𝐾, 2) containing the (𝑥, 𝑦) coordinates of detected poses where 𝑁 is the number
of detected poses, and 𝐾 is the number of individual keypoints. Keypoints with low confidence scores (below
threshold) will be replaced by -1.

keypoint_conns (numpy.ndarray)
A NumPy array of shape (𝑁,𝐷′

𝑛, 2, 2) containing the (𝑥, 𝑦) coordinates of adjacent keypoint pairs where 𝑁 is
the number of detected poses, and 𝐷′

𝑛 is the number of valid keypoint pairs for the the 𝑛-th pose where both
keypoints are detected.

keypoint_scores (numpy.ndarray)
A NumPy array of shape (𝑁,𝐾) containing the confidence scores of detected poses where 𝑁 is the number of
detected poses and 𝐾 is the number of individual keypoints. The confidence score has a range of [0, 1].

large_groups (List[int])
A list of integers representing the group IDs of groups that have exceeded the size threshold.

masks (numpy.ndarray)
A NumPy array of shape (𝑁,𝐻,𝑊) containing 𝑁 detected binarized masks where 𝐻 and 𝑊 are the height and
width of the masks. The order corresponds to bbox_labels.

(input) none
No inputs required.

(output) none
No outputs produced.

obj_3D_locs (List[numpy.ndarray])
A list of 𝑁 NumPy arrays representing the 3D coordinates (𝑥, 𝑦, 𝑧) of an object associated with a detected
bounding box.

obj_attrs (Dict[str, Any])
A dictionary of attributes associated with each bounding box, in the same order as bboxes. Different nodes that
produce this obj_attrs output type may contribute different attributes.

pipeline_end (bool)
A boolean that evaluates to True when the pipeline is completed. Suitable for operations that require the entire
inference pipeline to be completed before running.

saved_video_fps (float)
FPS of the recorded video, upon filming.

zones (List[List[Tuple[float, ...]]])
A nested list of 𝑍 zones. Each zone is described by 3 or more points which contains the (𝑥, 𝑦) coordinates
forming the boundary of a zone. The order corresponds to zone_count.

zone_count (List[int])
A list of integers representing the count of a pre-selected object class (for example, “person”) detected in each
specified zone. The order corresponds to zones.

Deprecated since version 1.2.0: obj_tags (List[str]) is deprecated and now subsumed under obj_attrs. dabble.
check_nearby_objs now accesses this attribute by using the flags key of obj_attrs. draw.tag has been refactored
for more drawing flexibility by accepting obj_attrs as input.

Deprecated since version 1.2.0: obj_groups (List[int]) is deprecated and now subsumed under obj_attrs. Af-
fected nodes (dabble.group_nearby_objs, dabble.check_large_groups, and draw.group_bbox_and_tag)
now access this attribute by using the groups key of obj_attrs.

116 Chapter 9. Glossary

CHAPTER

TEN

API DOCUMENTATION

input Reads data from a given input.
augment Performs image processing.
model Deep learning model nodes for computer vision.
dabble Algorithms that perform calculations/heuristics on the

outputs of model.
draw Draws results/outputs to an image.
output Writes/displays the outputs of the pipeline.

10.1 input

Description

Reads data from a given input.

Deprecated since version 1.2.0: input.live and input.recorded are deprecated. They have been replaced by the
input.visual node.

Modules

input.visual Reads inputs from multiple visual sources - image or
video file on local storage - folder of images or videos
- online cloud source - CCTV or webcam live feed

10.1.1 input.visual

Description

Reads inputs from multiple visual sources - image or video file on local storage - folder of images or videos - online
cloud source - CCTV or webcam live feed

class Node(config=None, node_path='', pkd_base_dir=None, **kwargs)
Receives visual sources as inputs.

Inputs
none: No inputs required.

117

PeekingDuck, Release developer

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

filename (str): The filename of video/image being read.

pipeline_end (bool): A boolean that evaluates to True when the pipeline is completed. Suit-
able for operations that require the entire inference pipeline to be completed before running.

saved_video_fps (float): FPS of the recorded video, upon filming.

Configs

• filename (str) – default = “video.mp4”. If source is a live stream/webcam, filename de-
fines the name of the MP4 file if the media is exported. If source is a local file or directory
of files, then filename is the current file being processed, and the value specified here is
overridden.

• mirror_image (bool) – default = False. Flag to set extracted image frame as mirror image
of input stream.

• resize (Dict[str, Any]) – default = { do_resizing: False, width: 1280, height: 720 }
Dimension of extracted image frame.

• source (Union[int, str]) – default = https://storage.googleapis.com/peekingduck/videos/wave.mp4.
Input source can be: - filename : local image or video file - directory name : all media files
will be processed - http URL for online cloud source : http[s]://. . . - rtsp URL for CCTV
: rtsp://. . . - 0 for webcam live feed Refer to OpenCV documentation for more technical
information.

• frames_log_freq (int) – default = 100.1 Logs frequency of frames passed in CLI

• saved_video_fps (int) – default = 10.Page 118, 1 This is used by output.media_writer to
set the FPS of the output file and its behavior is determined by the type of input source. If
source is an image file, this value is ignored as it is not applicable. If source is a video file, this
value will be overridden by the actual FPS of the video. If source is a live stream/webcam,
this value is used as the FPS of the output file. It is recommended to set this to the actual
FPS obtained on the machine running PeekingDuck (using dabble.fps).

• threading (bool) – default = False.1 Flag to enable threading when reading frames from
camera / live stream. The FPS can increase up to 30%. There is no need to enable threading
if reading from a video file.

• buffering (bool) – default = False.1 Boolean to indicate if threaded class should buffer
image frames. If reading from a video file and threading is True, then buffering should also
be True to avoid “lost frames”: which happens when the video file is read faster than it is pro-
cessed. One side effect of setting threading=True, buffering=True for a live stream/webcam
is the onscreen video could appear to be playing in slow-mo.

Technotes:

The following table summarizes the combinations of threading and buffering:

Threading False True
Buffering False/True False True
Sources Image file Ok Ok Ok

Video file Ok ! Ok
Webcam, http/rtsp stream Ok + !!

1 advanced configuration

118 Chapter 10. API Documentation

rtsp://
https://docs.opencv.org/4.5.5/d8/dfe/classcv_1_1VideoCapture.html

PeekingDuck, Release developer

Table Legend:

Ok : normal behavior + : potentially faster FPS ! : lost frames if source is faster than PeekingDuck !! : “slow-mo”
video, potential out-of-memory error due to buffer overflow if source is faster than PeekingDuck

Note: If threading=False, then the secondary parameter buffering is ignored regardless if it is set to True/False.

Here is a video to illustrate the differences between a normal video vs a “slow-mo” video using a 30 FPS webcam:
the video on the right appears to be playing in slow motion compared to the normal video on the left. This happens
as both threading and buffering are set to True, and the threaded input.visual reads the webcam at almost
60 FPS. Since the hardware is physically limited at 30 FPS, this means every frame gets duplicated, resulting in
each frame being processed and shown twice, thus “stretching out” the video.

10.2 augment

Description

Performs image processing. This can be done before or after the model.

Modules

augment.brightness Adjusts the brightness of an image.
augment.contrast Adjusts the contrast of an image.
augment.undistort Removes distortion from a wide-angle camera image.

10.2.1 augment.brightness

Description

Adjusts the brightness of an image.

class Node(config=None, **kwargs)
Adjusts the brightness of an image, by adding a bias/beta parameter.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Configs
beta (int) – [-100, 100], default = 0. Increasing the value of beta increases image brightness,
and vice versa.

10.2. augment 119

https://storage.googleapis.com/peekingduck/videos/wave_normal_vs_laggy.mp4
https://docs.opencv.org/4.x/d3/dc1/tutorial_basic_linear_transform.html

PeekingDuck, Release developer

10.2.2 augment.contrast

Description

Adjusts the contrast of an image.

class Node(config=None, **kwargs)
Adjusts the contrast of an image, by multiplying with a gain/alpha parameter.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Configs
alpha (float) – [0.0, 3.0], default = 1.0. Increasing the value of alpha increases the contrast.

10.2.3 augment.undistort

Description

Removes distortion from a wide-angle camera image.

class Node(config=None, **kwargs)
Undistorts an image by removing radial and tangential distortion. This may help to improve the performance of
certain models.

Before using this node for the first time, please follow the tutorial in dabble.camera_calibration to calculate
the camera coefficients of the camera you are using, and ensure that the file_path that the coefficients are stored
in is the same as the one specified in the configs.

The images below show an example of an image before and after undistortion. Note that after undistortion, the
shape of the image will change and the FOV will be reduced slightly.

Fig. 1: Before undistortion (left) and after undistortion (right)

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

120 Chapter 10. API Documentation

https://docs.opencv.org/4.x/d3/dc1/tutorial_basic_linear_transform.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html

PeekingDuck, Release developer

Configs
file_path (str) – default = “PeekingDuck/data/camera_calibration_coeffs.yml”. Path of the
YML file containing calculated camera coefficients.

10.3 model

Description

Deep learning model nodes for computer vision.

Modules

model.csrnet Congested Scene Recognition network: Dilated con-
volutional neural networks for understanding the highly
congested scenes.

model.efficientdet Scalable and efficient object detection.
model.fairmot Human detection and tracking model that balances the

importance between detection and re-ID tasks.
model.hrnet High-Resolution Network: Deep high-resolution repre-

sentation learning for human pose estimation.
model.jde Joint Detection and Embedding model for human detec-

tion and tracking.
model.mask_rcnn Instance segmentation model for generating high-

quality masks.
model.movenet Fast Pose Estimation model.
model.mtcnn Multi-task Cascaded Convolutional Networks for face

detection.
model.posenet Fast Pose Estimation model.
model.yolact_edge Instance segmentation model for real-time inference
model.yolo One-stage Object Detection model.
model.yolo_face Fast face detection model that can distinguish between

masked and unmasked faces.
model.yolo_license_plate License Plate Detection model.
model.yolox High performance anchor-free YOLO object detection

model.

10.3.1 model.csrnet

Description

Congested Scene Recognition network: Dilated convolutional neural networks for understanding the highly congested
scenes.

class Node(config=None, **kwargs)
Initializes and uses CSRNet model to predict the density map and crowd count.

The csrnet node is capable of predicting the number of people in dense and sparse crowds. The dense and sparse
crowd models were trained using data from ShanghaiTech Part A and ShanghaiTech Part B respectively. As the
models were trained to recognize congested scenes, the estimates are less accurate if the number of people are
low (e.g. less than 10).

10.3. model 121

PeekingDuck, Release developer

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
density_map (numpy.ndarray): A NumPy array of shape (𝐻,𝑊) representing the number of
persons per pixel. 𝐻 and 𝑊 are the height and width of the input image, respectively. The sum
of the array is the estimated total number of people.

count (int): An integer representing the number of counted objects.

Configs

• model_type (str) – {“dense”, “sparse”}, default=”sparse”. Defines the type of CSRNet
model to be used. The node uses the sparse crowd model by default and can be changed to
using the dense crowd model. As a rule of thumb, the dense crowd model should be used if
the people in a given image or video frame are packed shoulder to shoulder, e.g., stadiums.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• width (int) – default = 640. By default, the width of an image will be resized to 640 for
inference. The height of the image will be resized proportionally to preserve its aspect ratio.
In general, decreasing the width of an image will improve inference speed. However, this
might impact the accuracy of the model.

References

CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes: https://arxiv.
org/pdf/1802.10062.pdf

Model weights trained by https://github.com/Neerajj9/CSRNet-keras

Inference code adapted from https://github.com/Neerajj9/CSRNet-keras

10.3.2 model.efficientdet

Description

Scalable and efficient object detection.

class Node(config=None, **kwargs)
Initializes an EfficientDet model to detect bounding boxes from an image.

The EfficientDet node is capable of detecting objects from 80 categories. The table of categories can be found
here.

EfficientDet node has five levels of compound coefficient (0 - 4). A higher compound coefficient will scale up all
dimensions of the backbone network width, depth, input resolution, feature network, and box/class prediction at
the same time, which results in better performance but slower inference time. The default compound coefficient
is 0 and can be changed to other values.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding

122 Chapter 10. API Documentation

https://arxiv.org/pdf/1802.10062.pdf
https://arxiv.org/pdf/1802.10062.pdf
https://github.com/Neerajj9/CSRNet-keras
https://github.com/Neerajj9/CSRNet-keras

PeekingDuck, Release developer

box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

Configs

• model_type (int) – {0, 1, 2, 3, 4}, default = 0. Defines the compound coefficient for Effi-
cientDet.

• score_threshold (float) – [0, 1], default = 0.3. Bounding boxes with confidence score
below the threshold will be discarded.

• detect (List[Union[int, str]]) – default = [0]. List of object class names or IDs to be
detected. To detect all classes, refer to the tech note.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

References

EfficientDet: Scalable and Efficient Object Detection: https://arxiv.org/abs/1911.09070

Code adapted from https://github.com/xuannianz/EfficientDet.

10.3.3 model.fairmot

Description

Human detection and tracking model that balances the importance between detection and re-ID tasks.

class Node(config=None, **kwargs)
Initializes and uses FairMOT tracking model to detect and track people from the supplied image frame.

FairMOT is based on the anchor-free object detector CenterNet with modifications to balance the importance
between detection and re-identification tasks in an object tracker.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

10.3. model 123

https://arxiv.org/abs/1911.09070
https://github.com/xuannianz/EfficientDet

PeekingDuck, Release developer

obj_attrs (Dict[str, Any]): A dictionary of attributes associated with each bounding box,
in the same order as bboxes. Different nodes that produce this obj_attrs output type may con-
tribute different attributes. model.fairmot produces the ids attribute which contains the track-
ing IDs of the detections.

Configs

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• score_threshold (float) – default = 0.5. Object confidence score threshold.

• K (int) – default = 500. Maximum number of objects output during the object detection
stage.

• min_box_area (int) – default = 100. Minimum value for area of detected bounding box.
Calculated by width * height.

• track_buffer (int) – default = 30. Threshold to remove track if track is lost for more frames
than value.

• input_size (List[int]) – default = [864, 480]. Size (width, height) of the input image to
the model. Raw video/image frames will be resized to the input_size before they are fed
to the model.

References

FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking https://arxiv.org/abs/
2004.01888

Model weights trained by: https://github.com/ifzhang/FairMOT

10.3.4 model.hrnet

Description

High-Resolution Network: Deep high-resolution representation learning for human pose estimation. Requires an
object detector.

class Node(config=None, **kwargs)
Initializes and uses HRNet model to infer poses from detected bboxes. Note that HRNet must be used in con-
junction with an object detector applied prior.

The HRNet applied to human pose estimation uses the representation head, called HRNetV1.

The HRNet node is capable of detecting single human figures simultaneously per inference, with 17 keypoints
estimated for each detected human figure. The keypoint indices table can be found here.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

124 Chapter 10. API Documentation

https://arxiv.org/abs/2004.01888
https://arxiv.org/abs/2004.01888
https://github.com/ifzhang/FairMOT

PeekingDuck, Release developer

Outputs
keypoints (numpy.ndarray): A NumPy array of shape (𝑁,𝐾, 2) containing the (𝑥, 𝑦) co-
ordinates of detected poses where 𝑁 is the number of detected poses, and 𝐾 is the number of
individual keypoints. Keypoints with low confidence scores (below threshold) will be replaced
by -1.

keypoint_scores (numpy.ndarray): A NumPy array of shape (𝑁,𝐾) containing the confi-
dence scores of detected poses where 𝑁 is the number of detected poses and 𝐾 is the number of
individual keypoints. The confidence score has a range of [0, 1].

keypoint_conns (numpy.ndarray): A NumPy array of shape (𝑁,𝐷′
𝑛, 2, 2) containing the

(𝑥, 𝑦) coordinates of adjacent keypoint pairs where 𝑁 is the number of detected poses, and 𝐷′
𝑛

is the number of valid keypoint pairs for the the 𝑛-th pose where both keypoints are detected.

Configs

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• resolution (Dict[str, int]) – default = { height: 192, width: 256 }. Resolution of input
array to HRNet model.

• score_threshold (float) – [0, 1], default = 0.1. Threshold to determine if detection should
be returned

References

Deep High-Resolution Representation Learning for Visual Recognition: https://arxiv.org/abs/1908.07919

10.3.5 model.jde

Description

Joint Detection and Embedding model for human detection and tracking.

class Node(config, **kwargs)
Initializes and uses JDE tracking model to detect and track people from the supplied image frame.

JDE is a fast and high-performance multiple-object tracker that learns the object detection task and appearance
embedding task simultaneously in a shared neural network.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

10.3. model 125

https://arxiv.org/abs/1908.07919

PeekingDuck, Release developer

obj_attrs (Dict[str, Any]): A dictionary of attributes associated with each bounding box,
in the same order as bboxes. Different nodes that produce this obj_attrs output type may con-
tribute different attributes. model.fairmot produces the ids attribute which contains the track-
ing IDs of the detections.

Configs

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• iou_threshold (float) – default = 0.5. Threshold value for Intersecton-over-Union of de-
tections.

• nms_threshold (float) – default = 0.4. Threshold values for non-max suppression.

• score_threshold (float) – default = 0.5. Object confidence score threshold.

• min_box_area (int) – default = 200. Minimum value for area of detected bounding box.
Calculated by 𝑤𝑖𝑑𝑡ℎ× ℎ𝑒𝑖𝑔ℎ𝑡.

• track_buffer (int) – default = 30. Threshold to remove track if track is lost for more frames
than value.

References

Towards Real-Time Multi-Object Tracking: https://arxiv.org/abs/1909.12605v2

Model weights trained by: https://github.com/Zhongdao/Towards-Realtime-MOT

10.3.6 model.mask_rcnn

Description

Instance segmentation model for generating high-quality masks.

class Node(config=None, **kwargs)
Initializes and uses Mask R-CNN to infer from an image frame.

The Mask-RCNN node is capable detecting objects and their respective masks from 80 categories. The table of
object categories can be found here. The "r50-fpn" backbone is used by default, and the "r101-fpn" for the
ResNet 101 backbone variant can also be chosen.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

126 Chapter 10. API Documentation

https://arxiv.org/abs/1909.12605v2
https://github.com/Zhongdao/Towards-Realtime-MOT

PeekingDuck, Release developer

masks (numpy.ndarray): A NumPy array of shape (𝑁,𝐻,𝑊) containing 𝑁 detected bina-
rized masks where 𝐻 and 𝑊 are the height and width of the masks. The order corresponds to
bbox_labels.

Configs

• model_type (str) – {“r50-fpn”, “r101-fpn”}, default = “r50-fpn”. Defines the type of
backbones to be used.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• min_size (int) – default = 800. Minimum size of the image to be rescaled before feeding
it to the backbone.

• max_size (int) – default = 1333. Maximum size of the image to be rescaled before feeding
it to the backbone.

• detect (List[Union[int, string]]) – default = [0]. List of object class names or IDs
to be detected. To detect all classes, refer to the tech note.

• max_num_detections – (int): default = 100. Maximum number of detections per image,
for all classes.

• iou_threshold (float) – [0, 1], default = 0.5. Overlapping bounding boxes with Intersec-
tion over Union (IoU) above the threshold will be discarded.

• score_threshold (float) – [0, 1], default = 0.5. Bounding boxes with classification score
below the threshold will be discarded.

• mask_threshold (float) – [0, 1], default = 0.5. The confidence threshold for binarizing
the masks’ pixel values; determines whether an object is detected at a particular pixel.

References

Mask R-CNN: A conceptually simple, flexible, and general framework for object instance segmentation.: https:
//arxiv.org/abs/1703.06870

Inference code adapted from: https://pytorch.org/vision/0.11/_modules/torchvision/models/detection/mask_
rcnn.html

The weights for Mask-RCNN Model with ResNet50 FPN backbone were adapted from: https://download.
pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth

10.3.7 model.movenet

Description

Fast Pose Estimation model.

class Node(config=None, **kwargs)
MoveNet node that initializes a MoveNet model to detect human poses from an image.

The MoveNet node is capable of detecting up to 6 human figures for multipose lightning and single person for
singlepose lightning/thunder. If there are more than 6 persons in the image, multipose lightning will only detect
6. This also applies to singlepose models, where only 1 person will be detected in a multi persons image, do take
note that detection performance will suffer when using singlepose models on multi persons images. 17 keypoints
are estimated and the keypoint indices table can be found here.

10.3. model 127

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
https://pytorch.org/vision/0.11/_modules/torchvision/models/detection/mask_rcnn.html
https://pytorch.org/vision/0.11/_modules/torchvision/models/detection/mask_rcnn.html
https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth
https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth

PeekingDuck, Release developer

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

keypoints (numpy.ndarray): A NumPy array of shape (𝑁,𝐾, 2) containing the (𝑥, 𝑦) co-
ordinates of detected poses where 𝑁 is the number of detected poses, and 𝐾 is the number of
individual keypoints. Keypoints with low confidence scores (below threshold) will be replaced
by -1.

keypoint_scores (numpy.ndarray): A NumPy array of shape (𝑁,𝐾) containing the confi-
dence scores of detected poses where 𝑁 is the number of detected poses and 𝐾 is the number of
individual keypoints. The confidence score has a range of [0, 1].

keypoint_conns (numpy.ndarray): A NumPy array of shape (𝑁,𝐷′
𝑛, 2, 2) containing the

(𝑥, 𝑦) coordinates of adjacent keypoint pairs where 𝑁 is the number of detected poses, and 𝐷′
𝑛

is the number of valid keypoint pairs for the the 𝑛-th pose where both keypoints are detected.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

Configs

• model_format (str) – {“tensorflow”, “tensorrt”}, default=”tensorflow” Defines the
weights format of the model.

• model_type (str) – {” singlepose_lightning”, “singlepose_thunder”, “multi-
pose_lightning” }, default=”multipose_lightning” Defines the detection model for
MoveNet either single or multi pose. Lightning is smaller and faster but less accurate than
Thunder version.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• bbox_score_threshold (float) – [0,1], default = 0.2 Detected bounding box confidence
score threshold, only boxes above threshold will be kept in the output.

• keypoint_score_threshold (float) – [0,1], default = 0.3 Detected keypoints confidence
score threshold, only keypoints above threshold will be kept in output.

10.3.8 model.mtcnn

Description

Multi-task Cascaded Convolutional Networks for face detection. Works best with unmasked faces.

class Node(config=None, **kwargs)
Initializes and uses the MTCNN model to infer bboxes from an image frame.

The MTCNN node is a single-class model capable of detecting human faces. To a certain extent, it is also capable
of detecting bounding boxes around faces with face masks (e.g. surgical masks).

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

128 Chapter 10. API Documentation

PeekingDuck, Release developer

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

Configs

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• min_size (int) – default = 40. Minimum height and width of face in pixels to be detected.

• scale_factor (float) – [0, 1], default = 0.709. Scale factor to create the image pyramid. A
larger scale factor produces more accurate detections at the expense of inference speed.

• network_thresholds (List[float]) – [0, 1], default = [0.6, 0.7, 0.7]. Threshold values
for the Proposal Network (P-Net), Refine Network (R-Net) and Output Network (O-Net) in
the MTCNN model.

Calibration is performed at each stage in which bounding boxes with confidence scores less
than the specified threshold are discarded.

• score_threshold (float) – [0, 1], default = 0.7. Bounding boxes with confidence scores
less than the specified threshold in the final output are discarded.

References

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks: https://arxiv.org/ftp/
arxiv/papers/1604/1604.02878.pdf

Model weights trained by https://github.com/blaueck/tf-mtcnn

Changed in version 1.2.0: mtcnn_min_size is renamed to min_size. mtcnn_factor is renamed to
scale_factor. mtcnn_thresholds is renamed to network_thresholds. mtcnn_score is renamed to
score_threshold.

10.3.9 model.posenet

Description

Fast Pose Estimation model.

class Node(config=None, **kwargs)
Initializes a PoseNet model to detect human poses from an image.

The PoseNet node is capable of detecting multiple human figures simultaneously per inference and for each
detected human figure, 17 keypoints are estimated. The keypoint indices table can be found here.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

10.3. model 129

https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf
https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf
https://github.com/blaueck/tf-mtcnn

PeekingDuck, Release developer

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

keypoints (numpy.ndarray): A NumPy array of shape (𝑁,𝐾, 2) containing the (𝑥, 𝑦) co-
ordinates of detected poses where 𝑁 is the number of detected poses, and 𝐾 is the number of
individual keypoints. Keypoints with low confidence scores (below threshold) will be replaced
by -1.

keypoint_scores (numpy.ndarray): A NumPy array of shape (𝑁,𝐾) containing the confi-
dence scores of detected poses where 𝑁 is the number of detected poses and 𝐾 is the number of
individual keypoints. The confidence score has a range of [0, 1].

keypoint_conns (numpy.ndarray): A NumPy array of shape (𝑁,𝐷′
𝑛, 2, 2) containing the

(𝑥, 𝑦) coordinates of adjacent keypoint pairs where 𝑁 is the number of detected poses, and 𝐷′
𝑛

is the number of valid keypoint pairs for the the 𝑛-th pose where both keypoints are detected.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

Configs

• model_type (Union[str, int]) – {“resnet”, 50, 75, 100}, default=”resnet”. Defines the
backbone model for PoseNet.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• resolution (Dict) – default = { height: 225, width: 225 }. Resolution of input array to
PoseNet model.

• max_pose_detection (int) – default = 10. Maximum number of poses to be detected.

• score_threshold (float) – [0, 1], default = 0.4. Detected keypoints confidence score
threshold, only keypoints above threshold will be kept in output.

References

PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Em-
bedding Model: https://arxiv.org/abs/1803.08225

Code adapted from https://github.com/rwightman/posenet-python

10.3.10 model.yolact_edge

Description

Instance segmentation model for real-time inference

class Node(config=None, **kwargs)
Initializes and uses YolactEdge to infer from an image frame

The YolactEdge node is capable of detecting objects from 80 categories. The table of object categories can be
found here.

130 Chapter 10. API Documentation

https://arxiv.org/abs/1803.08225
https://github.com/rwightman/posenet-python

PeekingDuck, Release developer

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

masks (numpy.ndarray): A NumPy array of shape (𝑁,𝐻,𝑊) containing 𝑁 detected bina-
rized masks where 𝐻 and 𝑊 are the height and width of the masks. The order corresponds to
bbox_labels.

Configs

• model_type (str) – (str): {“r101-fpn”, “r50-fpn”, “mobilenetv2”}, default=”r50-fpn”.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• input_size (int) – default = 550. Input image resolution of the YolactEdge model.

• detect (List[Union[int, string]]) – default=[0]. List of object class names or IDs to
be detected. To detect all classes, refer to the tech note.

• max_num_detections – (int): default=100. Maximum number of detections per image,
for all classes.

• iou_threshold (float) – [0, 1], default = 0.5. Overlapping bounding boxes with Intersec-
tion over Union (IoU) above the threshold will be discarded.

• score_threshold (float) – [0, 1], default = 0.2. Bounding boxes with confidence score
(product of objectness score and classification score) below the threshold will be discarded.

References

YolactEdge: Real-time Instance Segmentation on the Edge https://arxiv.org/abs/2012.12259

Inference code and model weights: https://github.com/haotian-liu/yolact_edge

10.3.11 model.yolo

Description

One-stage Object Detection model.

class Node(config=None, **kwargs)
Initializes and uses YOLO model to infer bboxes from image frame.

The yolo node is capable of detecting objects from 80 categories. It uses YOLOv4-tiny by default and can be
changed to using YOLOv4. The table of categories can be found here.

10.3. model 131

https://arxiv.org/abs/2012.12259
https://github.com/haotian-liu/yolact_edge

PeekingDuck, Release developer

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

Configs

• model_type (str) – {“v4”, “v4tiny”}, default=”v4tiny”. Defines the type of YOLO model
to be used.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• num_classes (int) – default = 80. Maximum number of objects to be detected.

• detect (List[Union[int, str]]) – default = [0]. List of object class names or IDs to be
detected. To detect all classes, refer to the tech note.

• max_output_size_per_class (int) – default = 50. Maximum number of detected instances
for each class in an image.

• max_total_size (int) – default = 50. Maximum total number of detected instances in an
image.

• iou_threshold (float) – [0, 1], default = 0.5. Overlapping bounding boxes above the spec-
ified IoU (Intersection over Union) threshold are discarded.

• score_threshold (float) – [0, 1], default = 0.2. Bounding box with confidence score less
than the specified confidence score threshold is discarded.

References

YOLOv4: Optimal Speed and Accuracy of Object Detection: https://arxiv.org/pdf/2004.10934v1.pdf

Model weights trained by https://github.com/hunglc007/tensorflow-yolov4-tflite

Inference code adapted from https://github.com/zzh8829/yolov3-tf2

Changed in version 1.2.0: yolo_iou_threshold is renamed to iou_threshold. yolo_score_threshold
is renamed to score_threshold.

132 Chapter 10. API Documentation

https://arxiv.org/pdf/2004.10934v1.pdf
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/zzh8829/yolov3-tf2

PeekingDuck, Release developer

10.3.12 model.yolo_face

Description

Fast face detection model that can distinguish between masked and unmasked faces.

class Node(config=None, **kwargs)
Initializes and uses the YOLO face detection model to infer bboxes from image frame.

The YOLO face model is a two class model capable of differentiating human faces with and without face masks.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

Configs

• model_type (str) – {“v4”, “v4tiny”}, default=”v4tiny”. Defines the type of YOLO model
to be used.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• detect (List[int]) – default = [0, 1]. List of object class IDs to be detected where no_mask
is 0 and mask is 1.

• max_output_size_per_class (int) – default = 50. Maximum number of detected instances
for each class in an image.

• max_total_size (int) – default = 50. Maximum total number of detected instances in an
image.

• iou_threshold (float) – [0, 1], default = 0.1. Overlapping bounding boxes above the spec-
ified IoU (Intersection over Union) threshold are discarded.

• score_threshold (float) – [0, 1], default = 0.7. Bounding box with confidence score less
than the specified confidence score threshold is discarded.

10.3. model 133

PeekingDuck, Release developer

References

YOLOv4: Optimal Speed and Accuracy of Object Detection: https://arxiv.org/pdf/2004.10934v1.pdf

Model weights trained using pretrained weights from Darknet: https://github.com/AlexeyAB/darknet

Changed in version 1.2.0: yolo_iou_threshold is renamed to iou_threshold. yolo_score_threshold
is renamed to score_threshold.

10.3.13 model.yolo_license_plate

Description

License Plate Detection model.

class Node(config=None, **kwargs)
Initializes and uses YOLO model to infer bboxes from image frame.

This customized YOLO node is capable of detecting objects from a single class (License Plate). It uses YOLOv4
by default and can be changed to use YOLOv4-tiny if FPS is critical over accuracy.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

Configs

• model_type (str) – {“v4”, “v4tiny”}, default=”v4”. Defines the type of YOLO model to
be used.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• iou_threshold (float) – [0, 1], default = 0.3. Overlapping bounding boxes above the spec-
ified IoU (Intersection over Union) threshold are discarded.

• score_threshold (float) – [0, 1], default = 0.1. Bounding box with confidence score less
than the specified confidence score threshold is discarded.

134 Chapter 10. API Documentation

https://arxiv.org/pdf/2004.10934v1.pdf
https://github.com/AlexeyAB/darknet

PeekingDuck, Release developer

References

YOLOv4: Optimal Speed and Accuracy of Object Detection: https://arxiv.org/pdf/2004.10934v1.pdf

Model weights trained using pretrained weights from Darknet: https://github.com/AlexeyAB/darknet

Changed in version 1.2.0: yolo_iou_threshold is renamed to iou_threshold. yolo_score_threshold
is renamed to score_threshold.

10.3.14 model.yolox

Description

High performance anchor-free YOLO object detection model.

class Node(config=None, **kwargs)
Initializes and uses YOLOX to infer from an image frame.

The YOLOX node is capable detecting objects from 80 categories. The table of object categories can be
found here. The "yolox-tiny" model is used by default and can be changed to one of ("yolox-tiny",
"yolox-s", "yolox-m", "yolox-l").

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray): A NumPy array of shape (𝑁) containing confidence scores
[0, 1] of detected objects. The order corresponds to bboxes and bbox_labels.

Configs

• model_format (str) – {“pytorch”, “tensorrt”}, default=”pytorch” Defines the weights
format of the model.

• model_type (str) – {“yolox-tiny”, “yolox-s”, “yolox-m”, “yolox-l”}, default=”yolox-
tiny”. Defines the type of YOLOX model to be used.

• weights_parent_dir (Optional[str]) – default = null. Change the parent directory where
weights will be stored by replacing null with an absolute path to the desired directory.

• input_size (int) – default=416. Input image resolution of the YOLOX model.

• detect (List[Union[int, str]]) – default=[0]. List of object class names or IDs to be
detected. To detect all classes, refer to the tech note.

• iou_threshold (float) – [0, 1], default = 0.45. Overlapping bounding boxes with Intersec-
tion over Union (IoU) above the threshold will be discarded.

• score_threshold (float) – [0, 1], default = 0.25. Bounding boxes with confidence score
(product of objectness score and classification score) below the threshold will be discarded.

10.3. model 135

https://arxiv.org/pdf/2004.10934v1.pdf
https://github.com/AlexeyAB/darknet

PeekingDuck, Release developer

• agnostic_nms (bool) – default = True. Flag to determine if class-agnostic
NMS (torchvision.ops.nms) or class-aware NMS (torchvision.ops.batched_nms)
should be used.

• half (bool) – default = False. Flag to determine if half-precision floating-point should be
used for inference.

• fuse (bool) – default = False. Flag to determine if the convolution and batch normalization
layers should be fused for inference.

References

YOLOX: Exceeding YOLO Series in 2021: https://arxiv.org/abs/2107.08430

Inference code and model weights: https://github.com/Megvii-BaseDetection/YOLOX

10.4 dabble

Description

Algorithms that perform calculations/heuristics on the outputs of model.

Modules

dabble.bbox_count Counts the number of detected boxes.
dabble.bbox_to_3d_loc Estimates the 3D coordinates of an object given a 2D

bounding box.
dabble.bbox_to_btm_midpoint Converts bounding boxes to a single point of reference.
dabble.camera_calibration Calculates camera coefficients to be used to remove dis-

tortion from a wide-angle camera image.
dabble.check_large_groups Checks if number of objects in a group exceeds a thresh-

old.
dabble.check_nearby_objs Checks if detected objects are near each other.
dabble.fps Calculates the FPS of video.
dabble.group_nearby_objs Assigns objects in close proximity to groups.
dabble.keypoints_to_3d_loc Estimates the 3D coordinates of a person given 2D pose

coordinates.
dabble.statistics Calculates the cumulative average, minimum, and max-

imum of a single variable of interest over time.
dabble.tracking Performs multiple object tracking for detected bboxes.
dabble.zone_count Counts the number of detected objects within a bound-

ary.

136 Chapter 10. API Documentation

https://arxiv.org/abs/2107.08430
https://github.com/Megvii-BaseDetection/YOLOX

PeekingDuck, Release developer

10.4.1 dabble.bbox_count

Description

Counts the number of detected boxes.

class Node(config=None, **kwargs)
Counts the total number of detected objects.

Inputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

Outputs
count (int): An integer representing the number of counted objects.

Configs
None.

10.4.2 dabble.bbox_to_3d_loc

Description

Estimates the 3D coordinates of an object given a 2D bounding box.

class Node(config=None, **kwargs)
Uses 2D bounding boxes information to estimate 3D location.

Inputs
bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

Outputs
obj_3D_locs (List[numpy.ndarray]): A list of 𝑁 NumPy arrays representing the 3D coor-
dinates (𝑥, 𝑦, 𝑧) of an object associated with a detected bounding box.

Configs

• focal_length (float) – default = 1.14. Approximate focal length of webcam used, in me-
tres. Example on measuring focal length can be found here.

• height_factor (float) – default = 2.5. A factor used to estimate real-world distance from
pixels, based on average human height in metres. The value varies across different camera
set-ups, and calibration may be required. Please refer to the Social Distancing use case for
more information.

10.4. dabble 137

https://learnopencv.com/approximate-focal-length-for-webcams-and-cell-phone-cameras/

PeekingDuck, Release developer

10.4.3 dabble.bbox_to_btm_midpoint

Description

Converts bounding boxes to a single point of reference.

class Node(config=None, **kwargs)
Converts bounding boxes to a single point which is the bottom midpoint of the bounding box.

This node is primarily used for zone counting. The bottom midpoint is an unambiguous way of telling whether
an object is in the zone specified, as the bottom midpoint usually corresponds to the point where the object is
located.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

Outputs
btm_midpoint (List[Tuple[int, int]]): A list of tuples each representing the (𝑥, 𝑦) coor-
dinates of the bottom middle of a bounding box for use in zone analytics. The order corresponds
to bboxes.

Configs
None.

10.4.4 dabble.camera_calibration

Description

Calculates camera coefficients to be used to remove distortion from a wide-angle camera image.

class Node(config=None, **kwargs)
Calculates camera coefficients for undistortion.

To calculate your camera, first download the following checkerboard and print it out in a suitable size and attach
it to a hard surface, or display it on a sufficiently large device screen, such as a computer or a tablet. For most use
cases, an A4-sized checkerboard works well, but depending on the position and distance of the camera, a bigger
checkerboard may be required.

Next, create an empty pipeline_config.yml in your project folder and modify it as follows:

1 nodes:
2 - input.visual:
3 source: 0 # change this to the camera you are using
4 threading: True

(continues on next page)

138 Chapter 10. API Documentation

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html

PeekingDuck, Release developer

(continued from previous page)

5 mirror_image: True
6 - dabble.camera_calibration
7 - output.screen

Run the above pipeline with peekingduck run. If you are unfamiliar with the pipeline file and running peeking-
duck, you may refer to the HelloCV tutorial. You should see a display of your camera with some instructions
overlaid. Follow the instructions to position the checkerboard at 5 different positions in the camera. If the pro-
cess is successful, the camera coefficients will be calculated and written to a file and you can start using the
augment.undistort node.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Configs

• num_corners (List[int]) – default = [10, 7]. A list containing the number of internal
corners along the vertical and horizontal axes. For example, in the given image above, the
checkerboard is of size 11x8, so the number of internal corners is 10x7. If you are using the
given checkerboard above, you do not need to change this parameter.

• scale_factor (int) – default = 2. Factor to scale the image by when finding chessboard
corners. For example, with a scale of 4, an image of size (1080 x 1920) will be scaled down
to (270 x 480) when detecting the corners. Increasing this value reduces computation time.
If the node is unable to detect corners, reducing this value may help.

• file_path (str) – default = “PeekingDuck/data/camera_calibration_coeffs.yml”. Path
of the YML file to store the calculated camera coefficients.

10.4.5 dabble.check_large_groups

Description

Checks if number of objects in a group exceeds a threshold.

class Node(config=None, **kwargs)
Checks which groups have exceeded the group size threshold. The group associated with each object is accessed
by the groups key of obj_attrs.

Inputs
obj_attrs (Dict[str, Any]): A dictionary of attributes associated with each bounding box,
in the same order as bboxes. Different nodes that produce this obj_attrs output type may con-
tribute different attributes. dabble.check_large_groups requires the groups attribute.

Outputs
large_groups (List[int]): A list of integers representing the group IDs of groups that have
exceeded the size threshold.

Configs
group_size_threshold (int) – default = 5. Threshold of group size.

10.4. dabble 139

PeekingDuck, Release developer

Changed in version 1.2.0: draw.check_large_groups used to take in obj_tags (List[str]) as an input data
type, which has been deprecated and now subsumed under obj_attrs. The same attribute is accessed by using
the groups key of obj_attrs.

10.4.6 dabble.check_nearby_objs

Description

Checks if detected objects are near each other.

class Node(config=None, **kwargs)
Checks if any objects are near each other.

It does so by comparing the 3D locations of all objects to see which ones are near each other. If the distance
between two objects is below the minimum threshold, both would be flagged as near with tag_msg. These flags
can be accessed by the flags key of obj_attrs.

Inputs
obj_3D_locs (List[numpy.ndarray]): A list of 𝑁 NumPy arrays representing the 3D coor-
dinates (𝑥, 𝑦, 𝑧) of an object associated with a detected bounding box.

Outputs
obj_attrs (Dict[str, Any]): A dictionary of attributes associated with each bounding box,
in the same order as bboxes. Different nodes that produce this obj_attrs output type may con-
tribute different attributes. dabble.check_nearby_objs produces the flags attribute which
contains either the tag_msg for objects that are near each other or an empty string for objects
with no other objects nearby.

Configs

• near_threshold (float) – default = 2.0. Threshold of distance, in metres, between two
objects. Objects with distance less than near_threshold would be considered as ‘near’.

• tag_msg (str) – default = “TOO CLOSE!”. Tag to identify objects which are near others.

Changed in version 1.2.0: draw.check_nearby_objs used to return obj_tags (List[str]) as an output data
type, which has been deprecated and now subsumed under obj_attrs. The same attribute is accessed by using
the flags key of obj_attrs.

10.4.7 dabble.fps

Description

Calculates the FPS of video.

class Node(config=None, **kwargs)
Calculates the FPS of the image frame.

This node calculates instantaneous FPS and a 10 frame moving average FPS. A preferred output setting can be
set via the configuration file.

Inputs
pipeline_end (bool): A boolean that evaluates to True when the pipeline is completed. Suit-
able for operations that require the entire inference pipeline to be completed before running.

Outputs
fps (float): A float representing the Frames Per Second (FPS) when processing a live video
stream or a recorded video.

140 Chapter 10. API Documentation

PeekingDuck, Release developer

Configs

• fps_log_display (bool) – default = True. Enables logging of 10 frame moving average FPS
during execution of PeekingDuck.

• fps_log_freq (int) – default = 100. Frequency of logging moving average FPS for every n
frames.

• dampen_fps (bool) – default = True. If True, returns moving average FPS. If False,
returns instantaneous FPS .

10.4.8 dabble.group_nearby_objs

Description

Assigns objects in close proximity to groups.

class Node(config=None, **kwargs)
Groups objects that are near each other.

It does so by comparing the 3D locations of all objects, and assigning objects near each other to the same group.
The group associated with each object is accessed by the groups key of obj_attrs.

Inputs
obj_3D_locs (List[numpy.ndarray]): A list of 𝑁 NumPy arrays representing the 3D coor-
dinates (𝑥, 𝑦, 𝑧) of an object associated with a detected bounding box.

Outputs
obj_attrs (Dict[str, Any]): A dictionary of attributes associated with each bounding box,
in the same order as bboxes. Different nodes that produce this obj_attrs output type may con-
tribute different attributes. dabble.group_nearby_objs produces the groups attribute.

Configs
obj_dist_threshold (float) – default = 1.5. Threshold of distance, in metres, between two
objects. Objects with distance less than obj_dist_threshold would be assigned to the same
group.

Changed in version 1.2.0: draw.group_nearby_objs used to return obj_tags (List[str]) as an output
data type, which has been deprecated and now subsumed under obj_attrs. The same attribute is accessed by the
groups key of obj_attrs.

10.4.9 dabble.keypoints_to_3d_loc

Description

Estimates the 3D coordinates of a person given 2D pose coordinates.

class Node(config=None, **kwargs)
Uses pose keypoint information of the torso to estimate 3D location.

Inputs
keypoints (numpy.ndarray): A NumPy array of shape (𝑁,𝐾, 2) containing the (𝑥, 𝑦) co-
ordinates of detected poses where 𝑁 is the number of detected poses, and 𝐾 is the number of
individual keypoints. Keypoints with low confidence scores (below threshold) will be replaced
by -1.

10.4. dabble 141

PeekingDuck, Release developer

Outputs
obj_3D_locs (List[numpy.ndarray]): A list of 𝑁 NumPy arrays representing the 3D coor-
dinates (𝑥, 𝑦, 𝑧) of an object associated with a detected bounding box.

Configs

• focal_length (float) – default = 1.14. Approximate focal length of webcam used, in me-
tres. Example on measuring focal length can be found here.

• torso_factor (float) – default = 0.9. A factor used to estimate real-world distance from
pixels, based on average human torso length in metres. The value varies across different
camera set-ups, and calibration may be required.

10.4.10 dabble.statistics

Description

Calculates the cumulative average, minimum, and maximum of a single variable of interest over time.

class Node(config=None, **kwargs)
Calculates the cumulative average, minimum, and maximum of a single variable of interest (defined as current
result here) over time. The configurations for this node offer several functions to reduce the incoming data
type into a single current result of type int or float, which is valid for the current video frame. current
result is then used to recalculate the values of the cumulative average, minimum, and maximum for Peeking-
Duck’s running duration thus far.

The configuration for this node is described below using a combination of the Extended BNF and Augmented
BNF metasyntax. Concrete examples are provided later for illustration.

pkd_data_type = ? PeekingDuck built-in data types ?
e.g. count, large_groups, obj_attrs

user_data_type = ? user data types produced by custom nodes ?
e.g. my_var, my_attrs

dict_key = ? Python dictionary keys, with optional nesting ?
e.g. ["ids"], ["details"]["age"]

data_type = pkd_data_type | user_data_type
target_attr = data_type | data_type "[" dict_key "]"

unary_function = "identity" | "length" | "maximum" | "minimum"
unary_expr = unary_function ":" target_attr

num_operator = "==" | ">=" | "<=" | ">" | "<"
num_operand = ? Python integers or floats ?
num_comparison = num_operator num_operand

str_operator = "=="
str_operand = ? Python strings enclosed by single or double quotes ?
str_comparison = str_operator str_operand

cond_function = "cond_count"
cond_expr = cond_function ":" target_attr (num_comparison | str_comparison)

configuration = unary_expr | cond_expr

Points to note:

142 Chapter 10. API Documentation

https://learnopencv.com/approximate-focal-length-for-webcams-and-cell-phone-cameras/
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form

PeekingDuck, Release developer

• Square brackets ([]) are used to define <dict_key>, and should not be used elsewhere in the configuration.

• Operands are processed differently depending on whether they are enclosed by single/double quotes, or
not. If enclosed, the operand is assumed to be of type str and classified as <str_operand>. If not, the
operand is classified as <num_operand> and converted into float for further processing.

The table below illustrates how configuration choices reduce the incoming data type into the <current
result>.

<pkd_data_type>:
value
or
<user_data_type>:
value

<target_attr> <unary_expr>
or
<cond_expr>

<current result>

count: 8 count identity:
count

8

obj_attrs: {
ids: [1,2,4],
details: {

gen-
der:
[“male”,”male”,”female”],
age:
[52,17,48]
}}

obj_attrs[“ids”] length:
obj_attrs[“ids”]

3

obj_attrs [“details”]
[“age”]

maximum:
obj_attrs [“details”]
[“age”]

52

obj_attrs [“details”]
[“gender”]

cond_count:
obj_attrs [“details”]
[“gender”]
== “male”

2

obj_attrs [“details”]
[“age”]

cond_count:
obj_attrs [“details”]
[“age”]
< 60

3

Inputs
all (Any): This data type contains all the outputs from preceding nodes, granting a large degree
of flexibility to nodes that receive it. Examples of such nodes include draw.legend , dabble.
statistics, and output.csv_writer.

Outputs
cum_avg (float): Cumulative average of an attribute over time.

Note that cum_avg will not be updated if there are no detections. For example, if cum_avg = 10
for video frame 1, and there are no detections in the following 500 frames, cum_avg is still 10
for video frame 501.

cum_max (float | int): Cumulative maximum of an attribute over time.

cum_min (float | int): Cumulative minimum of an attribute over time.

Configs

• identity (str) – default=null Accepts <target_attr> of types int or float, and returns
the same value.

• length (str) – default=null Accepts <target_attr> of types List[Any] or Dict[str,
Any], and returns its length.

• minimum (str) – default=null Accepts <target_attr> of types List[float | int] or
Dict[str, float | int], and returns the minimum element within for the current frame.

10.4. dabble 143

PeekingDuck, Release developer

Not to be confused with the cum_min output data type, which represents the cumulative
minimum over time.

• maximum (str) – default=null Accepts <target_attr> of types List[float | int]
or Dict[str, float | int], and returns the maximum element within for the current
frame. Not to be confused with the cum_max output data type, which represents the cumu-
lative maximum over time.

• cond_count (str) – default=null Accepts <target_attr> of types List[float |
int | str], and checks if each element in the list fulfils the condition described by
<num_comparison> or <str_comparison>. The number of elements that fulfil the condi-
tion are counted towards <current result>.

10.4.11 dabble.tracking

Description

Performs multiple object tracking for detected bboxes.

class Node(config=None, **kwargs)
Uses bounding boxes detected by an object detector model to track multiple objects. dabble.tracking is a
useful alternative to model.fairmot and model.jde as it can track bounding boxes detected by the upstream
object detector and is not limited to only "person" detections.

Currently, two types of tracking algorithms can be selected: MOSSE and IOU. Information on the algorithms’
performance can be found here.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

Outputs
obj_attrs (Dict[str, Any]): A dictionary of attributes associated with each bounding box,
in the same order as bboxes. Different nodes that produce this obj_attrs output type may con-
tribute different attributes. dabble.tracking produces the ids attribute which contains the
tracking IDs of the detections.

Configs

• tracking_type (str) – {“iou”, “mosse”}, default=”iou”. Type of tracking algorithm to be
used. For more information about the trackers, please view the Object Counting (Over Time)
use case.

• iou_threshold (float) – [0, 1], default=0.1. Minimum IoU value to be used with the match-
ing logic.

• max_lost (int) – [0, sys.maxsize), default=10. Maximum number of frames to keep “lost”
tracks after which they will be removed. Only used when tracking_type = iou.

144 Chapter 10. API Documentation

PeekingDuck, Release developer

10.4.12 dabble.zone_count

Description

Counts the number of detected objects within a boundary.

class Node(config=None, **kwargs)
Uses the bottom midpoints of all detected bounding boxes and outputs the number of object counts in each
specified zone.

Given the bottom mid-points of all detected objects, this node checks if the points fall within the area of the
specified zones. The zone counting detections depend on the configuration set in the object detection models,
such as the type of object to detect.

Inputs
btm_midpoint (List[Tuple[int, int]]): A list of tuples each representing the (𝑥, 𝑦) coor-
dinates of the bottom middle of a bounding box for use in zone analytics. The order corresponds
to bboxes.

Outputs
zones (List[List[Tuple[float, ...]]]): A nested list of 𝑍 zones. Each zone is described
by 3 or more points which contains the (𝑥, 𝑦) coordinates forming the boundary of a zone. The
order corresponds to zone_count.

zone_count (List[int]): A list of integers representing the count of a pre-selected object class
(for example, “person”) detected in each specified zone. The order corresponds to zones.

Configs

• resolution (List[int]) – default = [1280, 720]. Resolution of input array to calculate pixel
coordinates of zone points.

• zones (List[List[List[Union[int, float]]]]) – default = [[[0, 0], [640, 0], [640,
720], [0, 720]], [[0.5, 0], [1, 0], [1, 1], [0.5, 1]]] Used for creation of specific zones with
either the absolute pixel values or % of resolution as a fraction between [0, 1].

10.5 draw

Description

Draws results/outputs to an image.

Deprecated since version 1.2.0: draw.image_processor is deprecated, and replaced by the nodes augment.
brightness and augment.contrast.

10.5. draw 145

PeekingDuck, Release developer

Modules

draw.bbox Draws bounding boxes over detected objects.
draw.blur_bbox Blurs area bounded by bounding boxes over detected ob-

ject.
draw.btm_midpoint Draws the bottom middle point of a bounding box.
draw.group_bbox_and_tag Draws large bounding boxes with tags, over identified

groups of bounding boxes.
draw.heat_map Superimposes a heat map over an image.
draw.instance_mask Draws instance segmentation masks.
draw.legend Displays selected information from preceding nodes in

a legend box.
draw.mosaic_bbox Mosaics area bounded by bounding boxes over detected

object
draw.poses Draws keypoints on a detected pose.
draw.tag Draws a tag (from obj_attrs) above each bounding box.
draw.zones Draws the 2D boundaries of a zone.

10.5.1 draw.bbox

Description

Draws bounding boxes over detected objects.

class Node(config=None, **kwargs)
Draws bounding boxes on image.

The draw.bbox node uses bboxes and, optionally, bbox_labels from the model predictions to draw the bbox
predictions onto the image.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

Outputs
none: No outputs produced.

Configs
show_labels (bool) – default = False. If True, shows class label, e.g., “person”, above the
bounding box.

146 Chapter 10. API Documentation

PeekingDuck, Release developer

10.5.2 draw.blur_bbox

Description

Blurs area bounded by bounding boxes over detected object.

class Node(config=None, **kwargs)
Blurs area bounded by bounding boxes on image.

The draw.blur_bbox node blurs the areas of the image bounded by the bounding boxes output from an object
detection model.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Configs
blur_kernel_size (int) – default = 50. This defines the kernel size used in the blur filter. Larger
values of blur_kernel_size gives more intense blurring.

10.5.3 draw.btm_midpoint

Description

Draws the bottom middle point of a bounding box.

class Node(config=None, **kwargs)
The draw.btm_midpoint node uses bboxes from the model predictions to draw the bottom midpoint of each
bbox as a dot onto the image. For better understanding of the use case, refer to the Zone Counting use case.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

btm_midpoint (List[Tuple[int, int]]): A list of tuples each representing the (𝑥, 𝑦) coor-
dinates of the bottom middle of a bounding box for use in zone analytics. The order corresponds
to bboxes.

Outputs
none: No outputs produced.

Configs
None.

10.5. draw 147

PeekingDuck, Release developer

10.5.4 draw.group_bbox_and_tag

Description

Draws large bounding boxes with tags, over identified groups of bounding boxes.

class Node(config=None, **kwargs)
Draws large bounding boxes with tags over multiple object bounding boxes which have been identified as be-
longing to the same group.

The large_groups data type from dabble.check_large_groups, and the groups key of the obj_attrs data
type from dabble.group_nearby_objs, are inputs for this node which identifies the different groups, and the
group associated with each bounding box.

For better understanding, refer to the Group Size Checking use case.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

obj_attrs (Dict[str, Any]): A dictionary of attributes associated with each bounding box,
in the same order as bboxes. Different nodes that produce this obj_attrs output type may con-
tribute different attributes. draw.group_bbox_and_tag requires the groups attribute from
dabble.group_nearby_objs.

large_groups (List[int]): A list of integers representing the group IDs of groups that have
exceeded the size threshold.

Outputs
none: No outputs produced.

Configs
tag (str) – default = “LARGE GROUP!”. The string message printed when a large group is
detected.

Changed in version 1.2.0: draw.group_bbox_and_tag used to take in obj_tags (List[str]) as an input
data type, which has been deprecated and now subsumed under obj_attrs. The same attribute is accessed by
using the groups key of obj_attrs.

10.5.5 draw.heat_map

Description

Superimposes a heat map over an image.

class Node(config=None, **kwargs)
Superimposes a heat map over an image.

The draw.heat_map node helps to identify areas that are more crowded. Areas that are more crowded are
highlighted in red while areas that are less crowded are highlighted in blue.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

148 Chapter 10. API Documentation

PeekingDuck, Release developer

density_map (numpy.ndarray): A NumPy array of shape (𝐻,𝑊) representing the number
of persons per pixel. 𝐻 and 𝑊 are the height and width of the input image, respectively. The
sum of the array is the estimated total number of people. This is produced by nodes such as
model.csrnet.

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Configs
None.

10.5.6 draw.instance_mask

Description

Draws instance segmentation masks.

class Node(config=None, **kwargs)
Draws instance segmentation masks on image.

The draw.mask node draws instance segmentation masks onto the detected object instances.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

masks (numpy.ndarray): A NumPy array of shape (𝑁,𝐻,𝑊) containing 𝑁 detected bina-
rized masks where 𝐻 and 𝑊 are the height and width of the masks. The order corresponds to
bbox_labels.

bbox_labels (numpy.ndarray): A NumPy array of shape (𝑁) containing strings representing
the labels of detected objects. The order corresponds to bboxes and bbox_scores.

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Configs

• instance_color_scheme (str) – {“random”, “hue_family”}, default = “hue_family” This
defines what colors to use for the standard masks. “hue_family”: use the same hue for each
instance belonging to the same class, but with a slightly different saturation. “random”: use
a random color for all instances.

• effect (dict) – {contrast: null, brightness: null, gamma_correction: null, blur: null,
mosaic: null} This defines the effect (if any) to apply to either the masked (objects) or
unmasked (background) areas of the image. If no effect is selected, a “standard” instance
segmentation mask will be drawn and colored according to the instance_color_scheme. For
example, to apply the contrast effect to the objects in the image, set the following config in
pipeline_config.yml:

effect : {contrast: 1.2}

Note that at most one effect can be enabled at a time.

10.5. draw 149

PeekingDuck, Release developer

Ef-
fect

Description Data
Type

Range

con-
trast

Adjusts contrast using this value as the “alpha” parameter. float [0.0,
3.0]

bright-
ness

Adjusts brightness using this value as the “beta” parameter. int [-
100,
100]

gamma_correctionAdjusts gamma using this value as the “gamma” parameter. float [0.0,
+inf]

blur Blurs the area using this value as the “blur_kernel_size” parameter.
Larger values gives more intense blurring.

int [1,
+inf]

mo-
saic

Mosaics the area using this value as the resolution of a mosaic fil-
ter (width × height). The number corresponds to the number of
rows and columns used to create a mosaic. For example, the set-
ting (mosaic: 25) creates a 25× 25 mosaic filter. Increasing the
number increases the intensity of pixelation over an area.

int [1,
+inf]

• effect_area (str) – {“objects”, “background”}, default = “objects” This defines where
the effect should be applied. “objects”: the effect is applied to the masked areas of the image.
“background”: the effect is applied to the unmasked areas of the image.

• contours (dict) – {show: False, thickness: 2}

Con-
tours

Description Data
Type

Range

show This determines whether to show the contours of the
masks.

bool N.A.

thick-
ness

This defines the thickness of the contours. int [1,
+inf]

10.5.7 draw.legend

Description

Displays selected information from preceding nodes in a legend box.

class Node(config=None, **kwargs)
Draws a translucent legend box on a corner of the image, containing selected information produced by preceding
nodes in the format <data type>: <value>. Supports in-built PeekingDuck data types defined in Glossary
as well as custom data types produced by custom nodes.

This example screenshot shows fps from dabble.fps, count from dabble.bbox_count and cum_avg from
dabble.statistics displayed within the legend box.

150 Chapter 10. API Documentation

PeekingDuck, Release developer

With the exception of the zone_count data type from dabble.zone_count, all other selected in-built Peeking-
Duck data types or custom data types must be of types int, float, or str. Note that values of float type such
as fps and cum_avg are displayed in 2 decimal places.

Inputs
all (Any): This data type contains all the outputs from preceding nodes, granting a large degree
of flexibility to nodes that receive it. Examples of such nodes include draw.legend , dabble.
statistics, and output.csv_writer.

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

Configs

• box_opacity (float) – default = 0.3. Opacity of legend box background. A value of 0.0
causes the legend box background to be fully transparent, while a value of 1.0 causes it to be
fully opaque.

• font (Dict[str, Union[float, int]]) – default = {size: 0.7, thickness: 2}. Size and
thickness of font within legend box. Examples of visually acceptable options are: 720p
video: {size: 0.7, thickness: 2} 1080p video: {size: 1.0, thickness: 3}

• position (str) – {“top”, “bottom”}, default = “bottom”. Position to draw legend box.
“top” draws it at the top-left position while “bottom” draws it at bottom-left.

• show (List[str]) – default = []. Include in this list the desired data type(s) to be drawn
within the legend box, such as ["fps", "count", "cum_avg"] in the example screen-
shot. Custom data types produced by custom nodes are also supported. If no data types are
included, an error will be produced.

Changed in version 1.2.0: Merged previous all_legend_items and include configs into a single show config
for greater clarity. Added support for drawing custom data types produced by custom nodes, to improve the
flexibility of this node.

10.5.8 draw.mosaic_bbox

Description

Mosaics area bounded by bounding boxes over detected object

class Node(config=None, **kwargs)
Mosaics areas bounded by bounding boxes on image.

The draw.mosaic_bbox node helps to anonymize detected objects by pixelating the areas bounded by bounding
boxes in an image.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

Outputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

10.5. draw 151

PeekingDuck, Release developer

Configs
mosaic_level (int) – default = 7. Defines the resolution of a mosaic filter (width × height). The
number corresponds to the number of rows and columns used to create a mosaic. For example,
the default setting (mosaic_level = 7) creates a 7 × 7 mosaic filter. Increasing the number
increases the intensity of pixelization over an area.

10.5.9 draw.poses

Description

Draws keypoints on a detected pose.

class Node(config=None, **kwargs)
Draws poses onto image.

The draw.poses node uses the keypoints, keypoint_scores, and keypoint_conns predictions from pose models
to draw the human poses onto the image. For better understanding, check out the pose models such as HRNet
and PoseNet.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

keypoints (numpy.ndarray): A NumPy array of shape (𝑁,𝐾, 2) containing the (𝑥, 𝑦) co-
ordinates of detected poses where 𝑁 is the number of detected poses, and 𝐾 is the number of
individual keypoints. Keypoints with low confidence scores (below threshold) will be replaced
by -1.

keypoint_scores (numpy.ndarray): A NumPy array of shape (𝑁,𝐾) containing the confi-
dence scores of detected poses where 𝑁 is the number of detected poses and 𝐾 is the number of
individual keypoints. The confidence score has a range of [0, 1].

keypoint_conns (numpy.ndarray): A NumPy array of shape (𝑁,𝐷′
𝑛, 2, 2) containing the

(𝑥, 𝑦) coordinates of adjacent keypoint pairs where 𝑁 is the number of detected poses, and 𝐷′
𝑛

is the number of valid keypoint pairs for the the 𝑛-th pose where both keypoints are detected.

Outputs
none: No outputs produced.

Configs
None.

10.5.10 draw.tag

Description

Draws a tag (from obj_attrs) above each bounding box.

class Node(config=None, **kwargs)
Draws a tag above each bounding box in the image, using information from selected attributes in obj_attrs. In
the general example below, obj_attrs has 2 attributes (<attr a> and <attr b>). There are n detected bounding
boxes, and each attribute has n corresponding tags stored in a list. The show config described subsequently is
used to choose the attribute or attributes to be drawn.

{"obj_attrs": {<attr a>: [<tag 1>, ..., <tag n>], <attr b>: [<tag 1>, ..., <tag n>]}
→˓}

152 Chapter 10. API Documentation

PeekingDuck, Release developer

The following type conventions need to be observed:

• Each attribute must be of type List, e.g., <attr a>: [<tag 1>, ..., <tag n>]

• Each tag must be of type str, int, float, or bool to be convertable into str type for drawing

In the example below, obj_attrs has 3 attributes (“ids”, “gender” and “age”), where the last 2 attributes are
nested within “details”. There are 2 detected bounding boxes, and thus each attribute consists of a list with 2
tags.

Example
{"obj_attrs": {"ids":[1,2], "details": {"gender": ["female","male"], "age": [52,17]}
→˓}

The table below illustrates how show can be configured to achieve different outcomes for this example. Key
takeaways are:

• To draw nested attributes, include all the keys leading to them (within the obj_attrs dictionary), separating
each key with a ->.

• To draw multiple comma-separated attributes above each bounding box, add them to the list of show config.

No. show config Tag above 1st bound-
ing box

Tag above 2nd bound-
ing box

1.
[“ids”] “1” “2”

2.
[“details -> gender”] “female” “male”

3.
[“details -> age”, “de-
tails -> gender”]

“52, female” “17, male”

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

bboxes (numpy.ndarray): A NumPy array of shape (𝑁, 4) containing normalized bounding
box coordinates of 𝑁 detected objects. Each bounding box is represented as (𝑥1, 𝑦1, 𝑥2, 𝑦2)
where (𝑥1, 𝑦1) is the top-left corner and (𝑥2, 𝑦2) is the bottom-right corner. The order corre-
sponds to bbox_labels and bbox_scores.

obj_attrs (Dict[str, Any]): A dictionary of attributes associated with each bounding box,
in the same order as bboxes. Different nodes that produce this obj_attrs output type may con-
tribute different attributes.

Outputs
none: No outputs produced.

Configs

• show (List[str]) – default = []. List of desired attributes to be drawn. For more details
on how to use this config, see the section above.

• tag_color (List[int]) – default = [77, 103, 255]. Define the color of the drawn tag, in
BGR format. Defined values have to be integers, and 0 ≤ 𝑣𝑎𝑙𝑢𝑒 ≤ 255.

10.5. draw 153

PeekingDuck, Release developer

Changed in version 1.2.0: draw.tag used to take in obj_tags (List[str]) as an input data type, which has
been deprecated and now subsumed under obj_attrs, giving this node more flexibility. Also, the tag_color
config is added to provide the option of changing the tag’s color.

10.5.11 draw.zones

Description

Draws the 2D boundaries of a zone.

class Node(config=None, **kwargs)
Draws the boundaries of each specified zone onto the image.

The draw.zones node uses the zones output from the dabble.zone_count node to draw a bounding box that
represents the zone boundaries onto the image.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

zones (List[List[Tuple[float, ...]]]): A nested list of 𝑍 zones. Each zone is described
by 3 or more points which contains the (𝑥, 𝑦) coordinates forming the boundary of a zone. The
order corresponds to zone_count.

Outputs
none: No outputs produced.

Configs
None.

10.6 output

Description

Writes/displays the outputs of the pipeline.

Modules

output.csv_writer Records the nodes' outputs to a CSV file.
output.media_writer Writes the output image/video to file.
output.screen Shows the outputs on your display.

154 Chapter 10. API Documentation

PeekingDuck, Release developer

10.6.1 output.csv_writer

Description

Records the nodes’ outputs to a CSV file.

class Node(config=None, **kwargs)
Tracks user-specified parameters and outputs the results in a CSV file.

Inputs
all (List) – A placeholder that represents a flexible input. Actual inputs to be written into the
CSV file can be configured in stats_to_track.

Outputs
none: No outputs produced.

Configs

• stats_to_track (List[str]) – default = [“keypoints”, “bboxes”, “bbox_labels”]. Param-
eters to log into the CSV file. The chosen parameters must be present in the data pool.

• file_path (str) – default = “PeekingDuck/data/stats.csv”. Path of the CSV file to be saved.
The resulting file name would have an appended timestamp.

• logging_interval (int) – default = 1. Interval between each log, in terms of seconds.

10.6.2 output.media_writer

Description

Writes the output image/video to file.

class Node(config=None, **kwargs)
Outputs the processed image or video to a file. A timestamp is appended to the end of the file name.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

filename (str): The filename of video/image being read.

saved_video_fps (float): FPS of the recorded video, upon filming.

pipeline_end (bool): A boolean that evaluates to True when the pipeline is completed. Suit-
able for operations that require the entire inference pipeline to be completed before running.

Outputs
none: No outputs produced.

Configs
output_dir (str) – default = “PeekingDuck/data/output”. Output directory for files to be
written locally.

10.6. output 155

PeekingDuck, Release developer

10.6.3 output.screen

Description

Shows the outputs on your display.

class Node(config=None, **kwargs)
Streams the output on your display.

Inputs
img (numpy.ndarray): A NumPy array of shape (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) containing the
image data in BGR format.

filename (str): The filename of video/image being read.

Outputs
pipeline_end (bool): A boolean that evaluates to True when the pipeline is completed. Suit-
able for operations that require the entire inference pipeline to be completed before running.

Configs

• window_name (str) – default = “PeekingDuck” Name of the displayed window.

• window_size (Dict[str, Union[bool, int]]) – default = { do_resizing: False,
width: 1280, height: 720 } Resizes the displayed window to the chosen width and weight,
if do_resizing is set to true. The size of the displayed window can also be adjusted by
clicking and dragging.

• window_loc (Dict[str, int]) – default = { x: 0, y: 0 } X and Y coordinates of the top
left corner of the displayed window, with reference from the top left corner of the screen, in
pixels.

Note: See Also:

PeekingDuck Viewer: a GUI for running PeekingDuck pipelines.

156 Chapter 10. API Documentation

PeekingDuck, Release developer

The PeekingDuck Viewer offers a GUI to view and analyze pipeline output. It has controls to re-play output
video, scrub to a frame of interest, zoom video, and a playlist for managing multiple pipelines.

10.6. output 157

PeekingDuck, Release developer

158 Chapter 10. API Documentation

PYTHON MODULE INDEX

a
augment, 119
augment.brightness, 119
augment.contrast, 120
augment.undistort, 120

d
dabble, 136
dabble.bbox_count, 137
dabble.bbox_to_3d_loc, 137
dabble.bbox_to_btm_midpoint, 138
dabble.camera_calibration, 138
dabble.check_large_groups, 139
dabble.check_nearby_objs, 140
dabble.fps, 140
dabble.group_nearby_objs, 141
dabble.keypoints_to_3d_loc, 141
dabble.statistics, 142
dabble.tracking, 144
dabble.zone_count, 145
draw, 145
draw.bbox, 146
draw.blur_bbox, 147
draw.btm_midpoint, 147
draw.group_bbox_and_tag, 148
draw.heat_map, 148
draw.instance_mask, 149
draw.legend, 150
draw.mosaic_bbox, 151
draw.poses, 152
draw.tag, 152
draw.zones, 154

i
input, 117
input.visual, 117

m
model, 121
model.csrnet, 121
model.efficientdet, 122
model.fairmot, 123

model.hrnet, 124
model.jde, 125
model.mask_rcnn, 126
model.movenet, 127
model.mtcnn, 128
model.posenet, 129
model.yolact_edge, 130
model.yolo, 131
model.yolo_face, 133
model.yolo_license_plate, 134
model.yolox, 135

o
output, 154
output.csv_writer, 155
output.media_writer, 155
output.screen, 156

159

PeekingDuck, Release developer

160 Python Module Index

INDEX

Symbols
(input) all, 115
(input) none, 116
(output) none, 116

A
augment

module, 119
augment.brightness

module, 119
augment.contrast

module, 120
augment.undistort

module, 120

B
bbox_labels, 115
bbox_scores, 115
bboxes, 115
btm_midpoint, 115

C
count, 115
cum_avg, 115
cum_max, 115
cum_min, 115

D
dabble

module, 136
dabble.bbox_count

module, 137
dabble.bbox_to_3d_loc

module, 137
dabble.bbox_to_btm_midpoint

module, 138
dabble.camera_calibration

module, 138
dabble.check_large_groups

module, 139
dabble.check_nearby_objs

module, 140
dabble.fps

module, 140
dabble.group_nearby_objs

module, 141
dabble.keypoints_to_3d_loc

module, 141
dabble.statistics

module, 142
dabble.tracking

module, 144
dabble.zone_count

module, 145
density_map, 115
draw

module, 145
draw.bbox

module, 146
draw.blur_bbox

module, 147
draw.btm_midpoint

module, 147
draw.group_bbox_and_tag

module, 148
draw.heat_map

module, 148
draw.instance_mask

module, 149
draw.legend

module, 150
draw.mosaic_bbox

module, 151
draw.poses

module, 152
draw.tag

module, 152
draw.zones

module, 154

F
filename, 115
fps, 115

161

PeekingDuck, Release developer

I
img, 116
input

module, 117
input.visual

module, 117

K
keypoint_conns, 116
keypoint_scores, 116
keypoints, 116

L
large_groups, 116

M
masks, 116
model

module, 121
model.csrnet

module, 121
model.efficientdet

module, 122
model.fairmot

module, 123
model.hrnet

module, 124
model.jde

module, 125
model.mask_rcnn

module, 126
model.movenet

module, 127
model.mtcnn

module, 128
model.posenet

module, 129
model.yolact_edge

module, 130
model.yolo

module, 131
model.yolo_face

module, 133
model.yolo_license_plate

module, 134
model.yolox

module, 135
module

augment, 119
augment.brightness, 119
augment.contrast, 120
augment.undistort, 120
dabble, 136

dabble.bbox_count, 137
dabble.bbox_to_3d_loc, 137
dabble.bbox_to_btm_midpoint, 138
dabble.camera_calibration, 138
dabble.check_large_groups, 139
dabble.check_nearby_objs, 140
dabble.fps, 140
dabble.group_nearby_objs, 141
dabble.keypoints_to_3d_loc, 141
dabble.statistics, 142
dabble.tracking, 144
dabble.zone_count, 145
draw, 145
draw.bbox, 146
draw.blur_bbox, 147
draw.btm_midpoint, 147
draw.group_bbox_and_tag, 148
draw.heat_map, 148
draw.instance_mask, 149
draw.legend, 150
draw.mosaic_bbox, 151
draw.poses, 152
draw.tag, 152
draw.zones, 154
input, 117
input.visual, 117
model, 121
model.csrnet, 121
model.efficientdet, 122
model.fairmot, 123
model.hrnet, 124
model.jde, 125
model.mask_rcnn, 126
model.movenet, 127
model.mtcnn, 128
model.posenet, 129
model.yolact_edge, 130
model.yolo, 131
model.yolo_face, 133
model.yolo_license_plate, 134
model.yolox, 135
output, 154
output.csv_writer, 155
output.media_writer, 155
output.screen, 156

N
Node (class in augment.brightness), 119
Node (class in augment.contrast), 120
Node (class in augment.undistort), 120
Node (class in dabble.bbox_count), 137
Node (class in dabble.bbox_to_3d_loc), 137
Node (class in dabble.bbox_to_btm_midpoint), 138
Node (class in dabble.camera_calibration), 138

162 Index

PeekingDuck, Release developer

Node (class in dabble.check_large_groups), 139
Node (class in dabble.check_nearby_objs), 140
Node (class in dabble.fps), 140
Node (class in dabble.group_nearby_objs), 141
Node (class in dabble.keypoints_to_3d_loc), 141
Node (class in dabble.statistics), 142
Node (class in dabble.tracking), 144
Node (class in dabble.zone_count), 145
Node (class in draw.bbox), 146
Node (class in draw.blur_bbox), 147
Node (class in draw.btm_midpoint), 147
Node (class in draw.group_bbox_and_tag), 148
Node (class in draw.heat_map), 148
Node (class in draw.instance_mask), 149
Node (class in draw.legend), 150
Node (class in draw.mosaic_bbox), 151
Node (class in draw.poses), 152
Node (class in draw.tag), 152
Node (class in draw.zones), 154
Node (class in input.visual), 117
Node (class in model.csrnet), 121
Node (class in model.efficientdet), 122
Node (class in model.fairmot), 123
Node (class in model.hrnet), 124
Node (class in model.jde), 125
Node (class in model.mask_rcnn), 126
Node (class in model.movenet), 127
Node (class in model.mtcnn), 128
Node (class in model.posenet), 129
Node (class in model.yolact_edge), 130
Node (class in model.yolo), 131
Node (class in model.yolo_face), 133
Node (class in model.yolo_license_plate), 134
Node (class in model.yolox), 135
Node (class in output.csv_writer), 155
Node (class in output.media_writer), 155
Node (class in output.screen), 156

O
obj_3D_locs, 116
obj_attrs, 116
output

module, 154
output.csv_writer

module, 155
output.media_writer

module, 155
output.screen

module, 156

P
pipeline_end, 116

S
saved_video_fps, 116

Z
zone_count, 116
zones, 116

Index 163

	Introduction
	What is PeekingDuck?
	Features
	Build realtime CV pipelines
	Leverage on SOTA models
	Create custom nodes

	How PeekingDuck Works
	Acknowledgements
	License
	Communities

	Getting Started
	Documentation Convention
	Standard Install
	Install PeekingDuck
	Verify PeekingDuck Installation

	Custom Install
	Arm64
	Apple Silicon Mac

	Tutorials
	“Hello Computer Vision”
	Pose Estimation
	Object Detection
	Using a WebCam
	Pipelines, Nodes and Configs
	Bounding Box vs Image Coordinates

	Duck Confit
	More Object Detection
	Record Video File with FPS
	Configuration - Behind the Scenes
	Augmenting Images

	Custom Nodes
	Recipe 1: Object Detection Score
	Recipe 2: Keypoints, Count Hand Waves
	Recipe 3: Debugging
	Other Recipes to Create Custom Nodes
	CLI Recipe
	Pipeline Recipe

	Peaking Duck
	Interfacing with SQL
	Counting Cars
	Object Tracking
	Tracking People within a Zone

	Calling PeekingDuck in Python
	Using PeekingDuck’s Pipeline
	Setting Up
	Creating a Custom Node for Debugging
	Creating the Python Script
	Running the Python Script

	Integrating with Your Workflow
	Import the Modules
	Initialize PeekingDuck Nodes
	Create a Dataset Loader
	Create a License Plate Parser Class
	The Inference Loop

	Using Your Own Models
	Model Training
	Setting Up
	Update Training Script
	Training the Model

	Using Your Trained Model with PeekingDuck
	Converting to a Custom Model Node
	Using the Classifier in a PeekingDuck Pipeline

	Custom Object Detection Models

	PeekingDuck Ecosystem
	PeekingDuck Viewer
	Running the Viewer
	Navigating the Output Video
	Using the Pipeline Playlist
	Exiting the Viewer

	Model Resources & Information
	Object Detection Models
	List of Object Detection Models
	Benchmarks
	Inference Speed
	Hardware
	Test Conditions

	Model Accuracy
	Dataset
	Test Conditions

	Object Detection IDs
	General Object Detection
	Face Detection

	Pose Estimation Models
	List of Pose Estimation Models
	Benchmarks
	Inference Speed
	Hardware
	Test Conditions

	Model Accuracy
	Dataset
	Test Conditions

	Keypoint IDs
	Whole Body

	Object Tracking Models
	List of Object Tracking Models
	Benchmarks
	Inference Speed
	Hardware
	Test Conditions

	Model Accuracy
	Dataset

	Crowd Counting Models
	List of Crowd Counting Models
	Benchmarks
	Model Accuracy
	Dataset

	Instance Segmentation Models
	List of Instance Segmentation Models
	Benchmarks
	Inference Speed
	Hardware
	Test Conditions

	Model Accuracy
	Evaluation on masks
	Evaluation on bounding boxes
	Dataset
	Test Conditions

	Instance Segmentation IDs
	General Instance Segmentation

	Bibliography
	Legend
	Object Detection
	Pose Estimation
	Crowd Counting
	Object Tracking
	Instance Segmentation

	Edge AI
	Installing TensorRT
	Using TensorRT Models
	Performance Speedup
	NVIDIA Jetson Xavier NX with 8GB RAM
	NVIDIA Jetson Xavier AGX with 16GB RAM
	Test Conditions

	References

	Use Cases
	Privacy Protection
	Privacy Protection (Faces)
	Overview
	Demo
	How It Works
	Nodes Used

	Privacy Protection (License Plates)
	Overview
	Demo
	How It Works
	Nodes Used

	Privacy Protection (People & Computer Screens)
	Overview
	Demo
	How It Works
	Nodes Used

	Smart Monitoring
	Crowd Counting
	Overview
	Demo
	How It Works
	Nodes Used

	Object Counting (Present)
	Overview
	Demo
	How It Works
	Nodes Used

	Object Counting (Over Time)
	Overview
	Demo
	How It Works
	Nodes Used
	Counting Objects Within Zones

	People Counting (Over Time)
	Overview
	Demo
	How It Works
	Nodes Used
	Counting People Within Zones

	Zone Counting
	Overview
	Demo
	How It Works
	Nodes Used

	COVID-19 Prevention and Control
	Face Mask Detection
	Overview
	Demo
	How It Works
	Nodes Used

	Group Size Checking
	Overview
	Demo
	How It Works
	Nodes Used
	Using with Social Distancing

	Social Distancing
	Overview
	Demo
	How It Works
	Nodes Used
	Using with Group Size Checker

	FAQ and Troubleshooting
	How can I post-process and visualize model outputs?
	How can I dynamically use all prior outputs as the input at run time?
	How do I debug custom nodes?
	Why does input.visual progress stop before 100%?
	Why does the output screen flash briefly and disappear on my second run?

	Glossary
	API Documentation
	input
	input.visual

	augment
	augment.brightness
	augment.contrast
	augment.undistort

	model
	model.csrnet
	model.efficientdet
	model.fairmot
	model.hrnet
	model.jde
	model.mask_rcnn
	model.movenet
	model.mtcnn
	model.posenet
	model.yolact_edge
	model.yolo
	model.yolo_face
	model.yolo_license_plate
	model.yolox

	dabble
	dabble.bbox_count
	dabble.bbox_to_3d_loc
	dabble.bbox_to_btm_midpoint
	dabble.camera_calibration
	dabble.check_large_groups
	dabble.check_nearby_objs
	dabble.fps
	dabble.group_nearby_objs
	dabble.keypoints_to_3d_loc
	dabble.statistics
	dabble.tracking
	dabble.zone_count

	draw
	draw.bbox
	draw.blur_bbox
	draw.btm_midpoint
	draw.group_bbox_and_tag
	draw.heat_map
	draw.instance_mask
	draw.legend
	draw.mosaic_bbox
	draw.poses
	draw.tag
	draw.zones

	output
	output.csv_writer
	output.media_writer
	output.screen

	Python Module Index
	Index

