PeekingDuck

Release developer

CVHub Al Singapore

Feb 01, 2023

CONTENTS

Introduction 1
1.1~ Whatis PeekingDuck? e 1
1.2 FeatureS o o e e e e e e e e e 1
1.3 How PeekingDuck Works e 2
1.4 AcknowledZements e e e e e e e e e e e e e e e e 2
L5 License o i e e e e e 2
1.6 Communities e e e e e e e 2
Getting Started 3
2.1 Documentation Convention o e e e e e 3
22 StandardInstall L e 3
23 CustomInstall e e e e e 4
Tutorials 7
3.1 “Hello Computer Vision”™ e 7
32 Duck Confit. o L e e e e e 13
33 CustomNodes e e e e e e 17
34 Peaking Duck e e e e e e e e e 32
3.5 Calling PeekingDuck in Python e 53
3.6 Using YourOwnModels o e 61
3.7 UsingModel HubNodes e 73
PeekingDuck Ecosystem 81
4.1 PeekingDuck Viewer 81
Model Resources & Information 85
5.1 Object Detection Models e 85
5.2 Pose Estimation Models e e e 89
5.3 Object Tracking Models e 91
54 Crowd Counting Models e 92
5.5 Imstance Segmentation Models L. e e e 93
5.6 Bibliography e e e e e e 97
Edge Al 99
6.1 Installing TensorRT L e e e e e e 99
6.2 Using TensorRT Models e 99
6.3 Performance Speedup e 100
6.4 References e 103
Use Cases 105
7.1 Privacy Protection L. 105

9

7.2 Smart Monitoring L e e e e e e e
7.3 COVID-19 Prevention and Control e
FAQ and Troubleshooting

8.1 How can I post-process and visualize model outputs?
8.2 How can I dynamically use all prior outputs as the input at run time?

8.3 HowdolIdebugcustomnodes? e
8.4 Why does input.visual progress stop before 100%?o oo
8.5 Why does the output screen flash briefly and disappear on my second run?

Glossary

10 API Documentation

T0.1 AnpUE . o . o e e e e e e e e e e
10.2 augment
10.3 model
10.4 dabble
10.5 draw

10.6 output

Python Module Index

Index

131
131
131
131
131
132

133

135
135
135
136
136
136
137

139

141

CHAPTER
ONE

INTRODUCTION

1.1 What is PeekingDuck?

PeekingDuck is an open-source, modular framework in Python, built for Computer Vision (CV) inference. The name
“PeekingDuck” is a play on: “Peeking” in a nod to CV; and “Duck” in duck typing used in Python.

1.2 Features

1.2.1 Build realtime CV pipelines

PeekingDuck enables you to build powerful CV pipelines with minimal lines of code.

1.2.2 Leverage on SOTA models
PeekingDuck comes with various state of the art (SOTA) object detection, pose estimation, object tracking, crowd

counting, and instance segmentation models. Mix and match different nodes to construct solutions for various use
cases.

1.2.3 Create custom nodes

You can create custom nodes to meet your own project’s requirements. PeekingDuck can also be imported as a library
to fit into your existing workflows.

https://pypi.org/project/peekingduck
https://pypi.org/project/peekingduck
https://pypi.org/project/peekingduck
https://en.wikipedia.org/wiki/Duck_typing

PeekingDuck, Release developer

1.3 How PeekingDuck Works

Nodes are the building blocks of PeekingDuck. Each node is a wrapper for a pipeline function, and contains information
on how other PeekingDuck nodes may interact with it.

PeekingDuck has 6 types of nodes:

A pipeline governs the behavior of a chain of nodes. The diagram below shows a sample pipeline. Nodes in a pipeline
are called in sequential order, and the output of one node will be the input to another. For example, input.visual
produces img, which is taken in by model.yolo, and model.yolo produces bboxes, which is taken in by draw. bbox.
For ease of visualization, not all the inputs and outputs of these nodes are included in this diagram.

1.4 Acknowledgements

This project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG-
RP-2019-050). Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not reflect the views of the National Research Foundation, Singapore.

1.5 License

PeekingDuck is under the open source Apache License 2.0 (:

Even so, your organization may require legal proof of its right to use PeekingDuck, due to circumstances such as the
following:

* Your organization is using PeekingDuck in a jurisdiction that does not recognize this license
* Your legal department requires a license to be purchased

* Your organization wants to hold a tangible legal document as evidence of the legal right to use and distribute
PeekingDuck

Contact us if any of these circumstances apply to you.

1.6 Communities

* Al Singapore community forum

¢ Discuss on GitHub

2 Chapter 1. Introduction

https://github.com/aisingapore/PeekingDuck/blob/main/LICENSE
https://aisingapore.org/home/contact
https://community.aisingapore.org/groups/computer-vision/forum/
https://github.com/aisingapore/PeekingDuck/discussions

CHAPTER
TWO

GETTING STARTED

2.1 Documentation Convention

Parts of this documentation and the tutorials are run from the command-line interface (CLI) environment, e.g., via
Terminal in Linux/macOS, or via Anaconda in Windows. There will be examples of commands you need to type as
inputs and text that PeekingDuck will display as outputs. The input commands can be dependent on the current folder
where they are typed.

The following text color scheme is used to illustrate these different contexts:

Color | Context Example

Blue Current folder [~user/src]

Green | User input: what you type in | > peekingduck --version
Black | PeekingDuck’s output peekingduck, version v1.2.0

The command prompt is assumed to be the symbol >, your home directory is assumed to be ~user, and the symbol
means to press the <Enter> key.

Putting it altogether, a sample terminal session looks like this:

Terminal Session

[~user/src] > peekingduck --version
peekingduck, version v1.2.0

2.2 Standard Install

2.2.1 Install PeekingDuck

Then run:
PeekingDuck supports Python 3.6 to 3.9.

It is recommended to install PeekingDuck in a Python virtual environment (such as pkd in the above commands), as it
creates an isolated environment for a Python project to install its own dependencies and avoid package version conflicts
with other projects.

PeekingDuck, Release developer

Note: For Apple Silicon Mac users, please see Custom Install - Apple Silicon Mac.

2.2.2 Verify PeekingDuck Installation

To check that PeekingDuck is installed successfully, run the following command:

Terminal Session

[~user] > peekingduck verify-install

Changed in version 1.3.0: The verify installation command has been changed from --verify_install to
verify-install.

You should see a video of a person waving his hand (taken from here) with bounding boxes overlaid as shown below:

The video will auto-close when it is run to the end (about 20 seconds, depending on system speed).
To exit earlier, click to select the video window and press q.

2.3 Custom Install
This section covers advanced PeekingDuck installation steps for users with ARM64 devices or Apple Silicon Macs.

2.3.1 Arm64

To install PeekingDuck on an ARM-based device, such as a Raspberry Pi, include the --no-dependencies flag, and
separately install the other dependencies listed in PeekingDuck’s [requirements.txt]:

Terminal Session

[~user] > pip install peekingduck --no-dependencies
[~user] > [install additional dependencies as specified within requirements.txt]

Verify the installation using:

Terminal Session

[~user] > peekingduck verify-install

4 Chapter 2. Getting Started

https://www.youtube.com/watch?v=IKj_z2hgYUM
https://github.com/aisingapore/PeekingDuck/blob/main/requirements.txt

PeekingDuck, Release developer

See here for changes to the verify installation command in version 1.3.0.

You should see a video of a person waving his hand with bounding boxes overlaid.

2.3.2 Apple Silicon Mac

Apple released their advanced ARM-based Apple Silicon M1 chip in late 2020, a significant change from the previous
Intel processors. We’ve successfully installed PeekingDuck on Apple Silicon Macs running macOS Big Sur and macOS
Monterey.

1. Prerequisites:
¢ Install homebrew

¢ Install miniforge using homebrew:

Terminal Session

[~user] > brew install miniforge

2. Create conda virtual environment and install base packages:

Terminal Session

[~user] > conda create -n pkd python=3.8
[~user] > conda activate pkd
[~user] > conda install click colorama opencv openblas pyyaml requests scipy shapely tqdm typeguard

3. Install Apple’s Tensorflow build that is optimized for Apple Silicon Macs:

* For macOS Monterey:

Terminal Session

[~user] > conda install -c apple tensorflow-deps
[~user] > pip install tensorflow-macos tensorflow-metal

* For macOS Big Sur:

Terminal Session

[~user] > conda install -c apple tensorflow-deps=2.6.0

2.3. Custom Install 5

https://en.wikipedia.org/wiki/Apple_M1
https://brew.sh/

PeekingDuck, Release developer

[~user] > pip install tensorflow-estimator==2.6.0 tensorflow-macos==2.6.0
[~user] > pip install tensorflow-metal==0.2.0

4. Install PyTorch (currently CPU-only):

Terminal Session

[~user] > pip install torch torchvision

5. Install PeekingDuck and verify installation:

Terminal Session

[~user] > pip install peekingduck --no-dependencies
[~user] > peekingduck verify-install

See here for changes to the verify installation command in version 1.3.0.

You should see a video of a person waving his hand (taken from here) with bounding boxes overlaid as
shown below:

The video will auto-close when it is run to the end (about 20 seconds, depending on system speed).
To exit earlier, click to select the video window and press q.

6 Chapter 2. Getting Started

https://www.youtube.com/watch?v=IKj_z2hgYUM

CHAPTER
THREE

TUTORIALS

The tutorials are presented in order of increasing difficulty, from the basic Hello Computer Vision to the advanced
Peaking Duck. It is recommended to go through these tutorials in order, especially if you are new to PeekingDuck.

3.1 “Hello Computer Vision”

Computer Vision (or CV) is a field in Al that develops techniques to help computers to “see” and “understand” the
contents of digital images like photographs and videos, and to derive meaningful information. Common CV applica-
tions include object detection to detect what objects are present in the image and pose estimation to detect the position
of human limbs relative to the body.

PeekingDuck allows you to build a CV pipeline to analyze and process images and/or videos. This pipeline is made up
of nodes: each node can perform certain CV-related tasks.

This section presents two basic “hello world” examples to demonstrate how to use PeekingDuck for pose estimation
and object detection.

3.1.1 Pose Estimation

To perform pose estimation with PeekingDuck, initialize a new PeekingDuck project using the following commands:

Terminal Session

[~user] > mkdir pose_estimation
[~user] > cd pose_estimation
[~user/pose_estimation] > peekingduck init

peekingduck init will prepare the pose_estimation folder for use with PeekingDuck. It creates a default pipeline file
called pipeline_config.yml and a src folder that will be covered in the later tutorials. The pipeline_config.yml
file looks like this:

nodes:
- input.visual:

source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
- model.posenet

(continues on next page)

PeekingDuck, Release developer

(continued from previous page)

- draw.pose
- output.screen

The above forms a pose estimation pipeline and it comprises four nodes that do the following:
1. input.visual: reads the file wave .mp4 from PeekingDuck’s cloud storage
2. model.posenet: runs the PoseNet pose estimation model on it
3. draw.pose: draws a human pose skeleton over the person tracking his hand movement
4. output.screen: outputs everything onto the screen for display

Now, run the pipeline using

Terminal Session

[~user/pose_estimation] > peekingduck run

You should see the following video of a person waving his hand.
Skeletal poses are drawn on him which track the hand movement.

PeekingDuck

_z=n

Fig. 1: PeekingDuck’s Pose Estimation Screenshot

You have successfully run a PeekingDuck pose estimation pipeline!

8 Chapter 3. Tutorials

PeekingDuck, Release developer

The video will auto-close when it is completed.
To exit earlier, click to select the video window and press q.

3.1.2 Object Detection

To perform object detection, initialize a new PeekingDuck project using the following commands:

Terminal Session

[~user] > mkdir object_detection
[~user] > cd object_detection
[~user/object_detection] > peekingduck init

Then modify pipeline_config.yml as follows:

nodes:
- input.visual:
source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
- model.yolo
- draw.bbox
- output.screen

The key differences between this and the earlier pipeline are:

Line 4: model.yolo runs the YOLO object detection model
Line 5: draw.bbox draws the bounding box to show the detected person

Run the new object detection pipeline with peekingduck run.

You will see the same video with a bounding box surrounding the person.

That’s it: you have created a new object detection pipeline by changing only two lines!

Note:

Try replacing wave .mp4 with your own video file and run both models.
For best effect, your video file should contain people performing some activities.

3.1. “Hello Computer Vision” 9

PeekingDuck, Release developer

PeekingDuck

Fig. 2: PeekingDuck’s Object Detection Screenshot

3.1.3 Using a WebCam

If your computer has a webcam attached, you can use it by changing the first input node (line 2) as follows:

nodes:
- input.visual:

source: 0 # use webcam for live video
- model.posenet # use pose estimation model
- draw.pose # draw skeletal poses

- output.screen

Now do a peekingduck run and you will see yourself onscreen. Move your hands around and see PeekingDuck tracking
your poses.

To exit, click to select the video window and press q.

Note: PeekingDuck assumes the webcam is defaulted to input source 0. If your system is configured
differently, you would have to specify the input source by changing the input .visual configuration. See
changing node configuration.

10 Chapter 3. Tutorials

PeekingDuck, Release developer

3.1.4 Pipelines, Nodes and Configs

PeekingDuck comes with a rich collection of nodes that you can use to create your own CV pipelines. Each node can
be customized by changing its configurations or settings.

To get a quick overview of PeekingDuck’s nodes, run the following command:

Terminal Session

[~user] > peekingduck nodes

) peekingduck nodes

PeekingDuck has the following nodes:
1:visual Info: https://peekingduck.readthedocs.io/en/stable/nodes/input.visual.html#module—input.visual

PeekingDuck has the following nodes:
1:brightness Info: https://peekingduck.readthedocs.io/en/stable/nodes/augment.brightness.html#module-augment.brightness

2:contrast Info: https://peekingduck.readthedocs.io/en/stable/nodes/augment.contrast.html#module-augment.contrast

PeekingDuck has the following nodes:

1:yolox Info: https://peekingduck.readthedocs.io/en/stable/nodes/model.yolox.html#module-model.yolox
2:mtenn Info: https://peekingduck.readthedocs.io/en/stable/nodes/model.mtcnn. html#module-model .mtcnn
3:csrnet Info: https://peekingduck.readthedocs.io/en/stable/nodes/model.csrnet.html#module-model.csrnet
4:yolo_license_plate Info: https://peekingduck.readthedocs.io/en/stable/nodes/model.yolo_license_plate.html#module—model

You will see a comprehensive list of all PeekingDuck’s nodes with links to their readthedocs pages for more infor-
mation.

PeekingDuck supports 6 types of nodes:

A PeekingDuck pipeline is created by stringing together a series of nodes that perform a logical sequence of operations.
Each node has its own set of configurable settings that can be modified to change its behavior. An example pipeline is
shown below:

3.1.5 Bounding Box vs Image Coordinates

PeekingDuck has two (z,y) coordinate systems, with top-left corner as origin (0, 0):

¢ Absolute image coordinates
For an image of width W and height H, the absolute image coordinates are integers from (0, 0) to (W —
1,H —1). E.g., for a 720 x 480 image, the absolute coordinates range from (0, 0) to (719, 479).

* Relative bounding box coordinates
For an image of width W and height H, the relative image coordinates are real numbers from (0.0, 0.0) to
(1.0,1.0). E.g., for a 720 x 480 image, the relative coordinates range from (0.0, 0.0) to (1.0, 1.0).

This means that in order to draw a bounding box onto an image, the bounding box relative coordinates would have to
be converted to the image absolute coordinates.

Using the above figure as an illustration, the bounding box coordinates are given as (0.18,0.10) top-left and (0.52, 0.88)
bottom-right. To convert them to image coordinates, multiply the x-coordinates by the image width and the y-

3.1. “Hello Computer Vision” 11

PeekingDuck, Release developer

Abs (0,0)
Rel (0,0)

(0.18, 0.10)

Height = 480

(0.52, 0.88)

Abs (719, 479)
Rel (1,1)

—

L

Width = 720

Fig. 3: PeekingDuck’s Image vs Bounding Box Coordinates

12 Chapter 3. Tutorials

PeekingDuck, Release developer

coordinates by the image height, and round the results into integers.

0.18 = 0.18 x 720 = 129.6 = 130 (int)
0.10 — 0.10 x 480 = 48.0 =48 (int)

0.52 — 0.52 x 720 = 374.4 = 374 (int)
0.88 — 0.88 x 480 = 422.4 = 422 (int)

Thus, the image coordinates are (130, 48) top-left and (374, 422) bottom-right.

Note: The model nodes return results in relative coordinates.

3.2 Duck Confit

This tutorial presents intermediate recipes for cooking up new PeekingDuck pipelines by modifying the nodes and their
configs.

3.2.1 More Object Detection

This section will demonstrate how to change the settings of PeekingDuck’s nodes to vary their functionalities.

If you had completed the earlier object detection tutorial, you will have the necessary folder and can skip to the next
step. Otherwise, create a new PeekingDuck project as shown below:

Terminal Session

[~user] > mkdir object_detection
[~user] > cd object_detection
[~user/object_detection] > peekingduck init

Next, download this demo video cat_and_computer.mp4 and save it into the object_detection folder.
The folder should contain the following:
object_detection/

cat_and_computer.mp4

pipeline_config.yml

src/

To perform object detection on the cat_and_computer.mp4 file, edit the pipeline_config.yml file as follows:

nodes:
- input.visual:
source: cat_and_computer.mp4
- model.yolo:
detect: ["cup",
- draw.bbox:
show_labels: True # configure draw.bbox to display object labels
- output.screen

cat", "laptop", "keyboard", "mouse"]

3.2. Duck Confit 13

https://storage.googleapis.com/peekingduck/videos/cat_and_computer.mp4

ST

PeekingDuck, Release developer

Here is a step-by-step explanation of what has been done:

Line 2 input.visual: tells PeekingDuck to load the cat_and_computer.mp4.

Line 4 model.yolo: by default, the YOLO model detects person only.
The cat_and_computer.mp4 contains other classes of objects like cup, cat, laptop, etc.
So we have to change the model settings to detect the other object classes.

Line 6 draw.bbox: reconfigure this node to display the detected object class label.

Run the above with the command peekingduck run.

PeekingDuck

Fig. 4: Cat and Computer Screenshot

You should see a display of the cat_and_computer.mp4 with the various objects being highlighted by PeekingDuck
in bounding boxes. The 30-second video will auto-close at the end, or you can press q to end early.

Note: The YOLO model can detect 80 different object classes. By default, it only detects the "person”
class. Use detect: ["*"] in the pipeline_config.yml to configure the model to detect all 80
classes.

3.2.2 Record Video File with FPS

This section demonstrates how to record PeekingDuck’s output into a video file. In addition, we will modify the pipeline
by adding new nodes to calculate the frames per second (FPS) and to show the FPS.

Edit pipeline_config.yml as shown below:

nodes:
- input.visual:

source: cat_and_computer.mp4
- model.yolo:

(continues on next page)

14 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

detect: ["cup", "cat", "laptop", "keyboard", "mouse"]
- draw.bbox:

show_labels: True
- dabble. fps # add new dabble node
- draw.legend: # show fps

show: ["fps"]

- output.screen

- output.media_writer: # add new output node
output_dir: /folder/to/save/video # this is a folder name

The additions are:

Line 8 dabble. fps: adds new dabble node to the pipeline. This node calculates the FPS.
Line 9 draw.legend: adds new draw node to display the FPS.

Line 12 output.media_writer: adds new output node to save PeekingDuck’s output to a local video
file. It requires a local folder path. If the folder is not available, PeekingDuck will create the folder
automatically. The filename is auto-generated by PeekingDuck based on the input source.

Run the above with the command peekingduck run. You will see the same video being played, but now it has the FPS
counter. When the video ends, an mp4 video file will be created and saved in the specified folder.

Note: You can view all the available nodes and their respective configurable settings in PeekingDuck’s
API documentation.

3.2.3 Configuration - Behind the Scenes

Here is an explanation on what goes on behind the scenes when you configure a node. Every node has a set of default
configuration. For instance, draw.bbox default configuration is:

input: ["bboxes", "img", "bbox_labels"]
output: ["none"]

show_labels: False

The keys input and output are compulsory and common across every node.
input specifies the data types the node would consume, to be read from the pipeline.
output specifies the data types the node would produce, to be put into the pipeline.

By default, show_labels is disabled. When you enable it with show_labels: True, what PeekingDuck does is
to override the default show_labels: False configuration with your specified True value. You will see another
instance of this at work in the advanced Peaking Duck tutorial on Tracking People Within a Zone.

3.2. Duck Confit 15

S

© 9 o w

PeekingDuck, Release developer

3.2.4 Augmenting Images

PeekingDuck has a class of augment nodes that can be used to perform preprocessing or postprocessing of im-
ages/videos. Augment currently lets you modify the brightness and contrast, and remove distortion from a wide-
angle camera image. For more details on image undistortion, refer to the documentation on augment .undistort and
dabble.camera_calibration.

The pipeline_config.yml below shows how to use the augment .brightness node within the pipeline:

nodes:
- input.visual:
source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
- model.yolo
- augment.brightness:
beta: 50 # ranges from -100 (darken) to +100 (brighten)
- draw.bbox
- output.screen

The following figure shows the difference between the original vs the brightened image:

a1
Original Image Augment.Brightness: beta +50

Fig. 5: Augment Brightness: Original vs Brightened Image

Note:

Royalty free video of cat and computer from: https://www.youtube.com/watch?v=-C1TEGZavko
Royalty free video of man waving hand from: https://www.youtube.com/watch?v=IKj_z2hgYUM

16 Chapter 3. Tutorials

https://www.youtube.com/watch?v=-C1TEGZavko
https://www.youtube.com/watch?v=IKj_z2hgYUM

PeekingDuck, Release developer

3.3 Custom Nodes

This tutorial will show you how to create your own custom nodes to run with PeekingDuck. Perhaps you’d like to take
a snapshot of a video frame, and post it to your API endpoint; or perhaps you have a model trained on a custom dataset,
and would like to use PeekingDuck’s input, draw, and output nodes. PeekingDuck is designed to be very flexible
— you can create your own nodes and use them with ours.

Let’s start by creating a new PeekingDuck project:

Terminal Session

[~user] > mkdir custom_project
[~user] > cd custom_project
[~user/custom_project] > peekingduck init

This creates the following custom_project folder structure:

custom_project/
pipeline_config.yml
src/
L— custom_nodes/
L— configs/

The sub-folders src, custom_nodes, and configs are empty: they serve as placeholders for contents to be added.

3.3.1 Recipe 1: Object Detection Score

When the YOLO object detection model detects an object in the image, it assigns a bounding box and a score to it. This
score is the “confidence score” which reflects how likely the box contains an object and how accurate is the bounding
box. It is a decimal number that ranges from 0.0 to 1.0 (or 100%). This number is internal and not readily viewable.

We will create a custom node to retrieve this score and display it on screen. This tutorial will use the
cat_and_computer.mp4 video from the earlier object detection tutorial. Copy it into the custom_project folder.

Use the following command to create a custom node: peekingduck create-node It will prompt you to answer several
questions. Press <Enter> to accept the default custom_nodes folder name, then key in draw for node type and score
for node name. Finally, press <Enter> to answer Y when asked to proceed.

The entire interaction is shown here, the answers you type in are shown in green text:

Terminal Session

[~user/custom_project] > peekingduck create-node

Creating new custom node. ..

Enter node directory relative to ~user/custom_project [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): draw
Enter node name [my_custom_node]: score

Node directory: ~user/custom_project/src/custom_nodes

3.3. Custom Nodes 17

https://storage.googleapis.com/peekingduck/videos/cat_and_computer.mp4

PeekingDuck, Release developer

Node type: draw

Node name: score

Creating the following files:

Config file: ~user/custom_project/src/custom_nodes/configs/draw/score.yml
Script file: ~user/custom_project/src/custom_nodes/draw/score.py

Proceed? [Y/n]:
Created node!

The custom_project folder structure should look like this:

custom_project/

-

cat_and_computer.mp4
pipeline_config.yml
src/

L custom_nodes/

configs/
L— draw/
L score.yml
draw/
L— score.py

custom_project now contains three files that we need to modify to implement our custom node function.

1. src/custom_nodes/configs/draw/score.yml:

score.yml initial content:

Mandatory configs

Receive bounding boxes and their respective labels as input. Replace with

other data types as required. List of built-in data types for PeekingDuck can
be found at https://peekingduck.readthedocs.io/en/stable/glossary.html.
input: ["bboxes", "bbox_labels"]

Example:

Output ‘obj_attrs' for visualization with ‘draw.tag node and ‘custom_key" for
use with other custom nodes. Replace as required.

output: ["obj_attrs", "custom_key"]

Optional configs depending on node
threshold: 0.5 # example

The first file score.yml defines the properties of the custom node. Lines 5 and 9 show the mandatory configs
input and output.

input specifies the data types the node would consume, to be read from the pipeline. output specifies the data
types the node would produce, to be put into the pipeline.

To display the bounding box confidence score, our node requires three pieces of input data: the bounding box,
the score to display, and the image to draw on. These are defined as the data types bboxes, bbox_scores, and img
respectively in the AP/ docs.

Our custom node only displays the score on screen and does not produce any outputs for the pipeline, so the
output is “none”.

There are also no optional configs, so lines 11 - 12 can be removed.

18

Chapter 3. Tutorials

PeekingDuck, Release developer

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

score.yml updated content:

Mandatory configs
input: ["img", "bboxes", "bbox_scores"]
output: ["none"]

No optional configs

Note: Comments in yaml files start with # It is possible for a node to have input: ["none"]

src/custom_nodes/draw/score.py:

The second file score. py contains the boilerplate code for creating a custom node. Update the code to implement
the desired behavior for the node.

Show/Hide Code for score.py

mirn

Custom node to show object detection scores

mirn

from typing import Any, Dict, List, Tuple
import cv2
from peekingduck.nodes.abstract_node import AbstractNode

YELLOW = (0, 255, 255) # in BGR format, per opencv's convention

def map_bbox_to_image_coords(
bbox: List[float], image_size: Tuple[int, int]
) -> List[int]:
"""This is a helper function to map bounding box coords (relative) to
image coords (absolute).
Bounding box coords ranges from 0 to 1
where (0, 0) = image top-left, (1, 1) = image bottom-right.

Args:
bbox (List[float]): List of 4 floats x1, yl, x2, y2
image_size (Tuple[int, int]): Width, Height of image

Returns:

List[int]: x1, y1, x2, y2 in integer image coords
width, height = image_size[0], image_size[1]
x1, yl, x2, y2 = bbox

x1 *= width
x2 *= width
yl *= height
y2 *= height

return int(xl), int(yl), int(x2), int(y2)

class Node(AbstractNode):

(continues on next page)

3.3

Custom Nodes 19

PeekingDuck, Release developer

37

38

39

40

41

4

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

(continued from previous page)

o

This is a template class of how to write a node for PeekingDuck,
using AbstractNode as the parent class.
This node draws scores on objects detected.

Args:
config (:obj: Dict[str, Any] | :obj: None“): Node configuration.

o

def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
"""Node initializer
Since we do not require any special setup, it only calls the init__
method of its parent class.

mirn

super().__init__(config, node_path=__name__, **kwargs)

def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
"""This method implements the display score function.
As PeekingDuck iterates through the CV pipeline, this 'run' method
is called at each iteration.

Args:
inputs (dict): Dictionary with keys "img", "bboxes", "bbox_scores"

Returns:
outputs (dict): Empty dictionary

i

extract pipeline inputs and compute image size in (width, height)
img = inputs["img"]

bboxes = inputs['bboxes"]

scores = inputs["bbox_scores"]

img_size = (img.shape[1], img.shape[0]) # width, height

for i, bbox in enumerate(bboxes):
for each bounding box:

- compute (x1, yl) top-left, (x2, y2) bottom-right coordinates
- convert score into a two decimal place numeric string

- draw score string onto image using opencv's putText()

(see opencv's API docs for more info)

x1, yl, x2, y2 = map_bbox_to_image_coords(bbox, img_size)
score = scores[i]

score_str = f"{score:0.2f}"

cv2.putText(

img=img,
text=score_str,
org=(x1, y2),

fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0,

color=YELLOW,

thickness=3,

(continues on next page)

20

Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

89
% return {} # node has no outputs

The updated node code defines a helper function map_bbox_to_image_coords to map the bounding box coor-
dinates to the image coordinates, as explained in this section.

The run method implements the main logic which processes every bounding box to compute its on-screen co-
ordinates and to draw the bounding box confidence score at its left-bottom position.

3. pipeline_config.yml:

pipeline_config.yml initial content:

1 |nodes:

2 |- input.visual:

3 source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
4+ |- model.posenet

5 |- draw.pose

s |- output.screen

This file implements the pipeline. Modify the default pipeline to the one shown below:

pipeline_config.yml updated content:

| |nodes:

2 |- input.visual:

3 source: cat_and_computer.mp4

+ |- model.yolo:

5 detect: ["cup", "cat", "laptop", "keyboard", "mouse"]
¢ |- draw.bbox:

7 show_labels: True

¢ |- custom_nodes.draw.score

9 |- output.screen

Line 8 adds our custom node into the pipeline where it will be run by PeekingDuck during each pipeline iteration.

Execute peekingduck run to see your custom node in action.

Note: Royalty free video of cat and computer from: https://www.youtube.com/watch?v=-C1TEGZavko

3.3.2 Recipe 2: Keypoints, Count Hand Waves

This tutorial will create a custom node to analyze the skeletal keypoints of the person from the wave.mp4 video in the
pose estimation tutorial and to count the number of times the person waves his hand.

The PoseNet pose estimation model outputs seventeen keypoints for the person corresponding to the different body
parts as documented here. Each keypoint is a pair of (x, y) coordinates, where x and y are real numbers ranging
from 0.0 to 1.0 (using relative coordinates).

Starting with a newly initialized PeekingDuck folder, call peekingduck create-node to create a new dabble.wave
custom node as shown below:

Terminal Session

3.3. Custom Nodes 21

https://www.youtube.com/watch?v=-C1TEGZavko
https://storage.googleapis.com/peekingduck/videos/wave.mp4

PeekingDuck, Release developer

PeekingDuck

Fig. 6: Custom Node Showing Object Detection Scores

[~user] > mkdir wave_project

[~user] > cd wave_project

[~user/wave_project] > peekingduck init

Welcome to PeekingDuck!

2022-02-11 18:17:31 peekingduck.cli INFO: Creating custom nodes folder in ~user/wave_project/src/custom_nodes
[~user/wave_project] > peekingduck create-node

Creating new custom node. ..

Enter node directory relative to ~user/wave_project [src/custom_nodes]:

Select node type (input, augment, model, draw, dabble, output): dabble

Enter node name [my_custom_node]: wave

Node directory: ~user/wave_project/src/custom_nodes
Node type: dabble
Node name: wave

Creating the following files:
Config file: ~user/wave_project/src/custom_nodes/configs/dabble/wave.yml
Script file: ~user/wave_project/src/custom_nodes/dabble/wave.py

Proceed? [Y/n]:

Created node!

Also, copy wave.mp4 into the above folder. You should end up with the following folder structure:

wave_project/
pipeline_config.yml
src/

22 Chapter 3. Tutorials

https://storage.googleapis.com/peekingduck/videos/wave.mp4

PeekingDuck, Release developer

L custom_nodes/
configs/
L dabble/
L— wave.yml
dabble/
L— wave.py

L— wave.mp4

To implement this tutorial, the three files wave . yml, wave.py and pipeline_config.yml are to be edited as follows:

1. src/custom_nodes/configs/dabble/wave.yml:

20

21

22

23

24

25

26

27

28

Dabble node has both input and output
input: ["img", "bboxes", "bbox_scores", "keypoints", "keypoint_scores"]
output: ["none"]

No optional configs

We will implement this tutorial using a custom dabble node, which will take the inputs img, bboxes, bbox_scores,
keypoints, and keypoint_scores from the pipeline. The node has no output.

src/custom_nodes/dabble/wave.py:
The dabble.wave code structure is similar to the draw. score code structure in the other custom node tutorial.

Show/Hide Code for wave.py

mirn

Custom node to show keypoints and count the number of times the person's hand is.
—waved

mirn

from typing import Any, Dict, List, Tuple
import cv2
from peekingduck.nodes.abstract_node import AbstractNode

setup global constants
FONT = cv2.FONT_HERSHEY_SIMPLEX

WHITE = (255, 255, 255) # opencv loads file in BGR format
YELLOW = (0, 255, 255)

THRESHOLD = 0.6 # ignore keypoints below this threshold
KP_RIGHT_SHOULDER = 6 # PoselNet's skeletal keypoints

KP_RIGHT_WRIST = 10

def map_bbox_to_image_coords (
bbox: List[float], image_size: Tuple[int, int]
) -> List[int]:
"""First helper function to convert relative bounding box coordinates to
absolute image coordinates.
Bounding box coords ranges from 0 to 1
where (0, 0) = image top-left, (1, 1) = image bottom-right.

Args:
bbox (List[float]): List of 4 floats x1, yl, x2, y2

image_size (Tuple[int, int]): Width, Height of image

(continues on next page)

3.3

Custom Nodes 23

PeekingDuck, Release developer

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

(continued from previous page)

Returns:

List[int]: x1, yl, x2, y2 in integer image coords
width, height = image_size[0], image_size[1]
x1, yl, x2, y2 = bbox

x1 *= width
x2 *= width
yl *= height
y2 *= height

return int(xl), int(yl), int(x2), int(y2)

def map_keypoint_to_image_coords(
keypoint: List[float], image_size: Tuple[int, int]
) -> List[int]:
"""Second helper function to convert relative keypoint coordinates to
absolute image coordinates.
Keypoint coords ranges from 0 to 1
where (0, 0) = image top-left, (1, 1) = image bottom-right.

Args:
bbox (List[float]): List of 2 floats x, y (relative)
image_size (Tuple[int, int]): Width, Height of image

Returns:

List[int]: x, y in integer image coords
width, height = image_size[0], image_size[1]
x, y = keypoint
X *= width
y *= height
return int(x), int(y)

def draw_text(img, x, y, text_str: str, color_code):

"""Helper function to call opencv's drawing function,
to improve code readability in node's run() method.
cv2.putText(

img=img,

text=text_str,

org=(x, y),

fontFace=cv2.FONT_HERSHEY_STIMPLEX,

fontScale=0.4,

color=color_code,

thickness=2,

class Node(AbstractNode):
"""Custom node to display keypoints and count number of hand waves

(continues on next page)

24

Chapter 3. Tutorials

PeekingDuck, Release developer

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

(continued from previous page)

Args:
config (:obj:'Dict[str, Any]" | :obj: None'): Node configuration.

e

def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
super() .__init__(config, node_path=__name__, **kwargs)
setup object working variables
self.right_wrist = None
self.direction = None
self.num_direction_changes = 0
self.num_waves = 0

def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
"""This node draws keypoints and count hand waves.

Args:
inputs (dict): Dictionary with keys

(] "

img", "bboxes", "bbox_scores", "keypoints", "keypoint_scores".

Returns:
outputs (dict): Empty dictionary.

i

get required inputs from pipeline

img = inputs["img"]

bboxes = inputs['bboxes"]

bbox_scores = inputs["bbox_scores"]
keypoints = inputs["keypoints"]
keypoint_scores = inputs['keypoint_scores"]

img_size = (img.shape[l], img.shape[0]) # image width, height

get bounding box confidence score and draw it at the

left-bottom (x1, y2) corner of the bounding box (offset by 30 pixels)
the_bbox = bboxes[0] # image only has one person
the_bbox_score = bbox_scores[0] # only one set of scores

x1, y1, x2, y2 = map_bbox_to_image_coords(the_bbox, img_size)
score_str = f"BBox {the_bbox_score:0.2f}"
cv2.putText(

img=img,
text=score_str,
org=(x1, y2 - 30), # offset by 30 pixels

fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0,

color=WHITE,

thickness=3,

)

hand wave detection using a simple heuristic of tracking the
right wrist movement

(continues on next page)

3.3

. Custom Nodes 25

PeekingDuck, Release developer

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

(continued from previous page)

the_keypoints = keypoints[0] # image only has one person
the_keypoint_scores = keypoint_scores[0] # only one set of scores
right_wrist = None

right_shoulder = None

for i, keypoints in enumerate(the_keypoints):
keypoint_score = the_keypoint_scores[i]

if keypoint_score >= THRESHOLD:
X, y = map_keypoint_to_image_coords(keypoints.tolist(), img_size)
x_y_str = f"({x}, {yPD"

if i == KP_RIGHT_SHOULDER:
right_shoulder = keypoints
the_color = YELLOW
elif i == KP_RIGHT_WRIST:
right_wrist = keypoints
the_color = YELLOW
else: # generic keypoint
the_color = WHITE

draw_text(img, x, y, X_y_str, the_color)

if right_wrist is not None and right_shoulder is not None:
only count number of hand waves after we have gotten the
skeletal poses for the right wrist and right shoulder
if self.right_wrist is None:
self.right_wrist = right_wrist # first wrist data point
else:
wait for wrist to be above shoulder to count hand wave
if right_wrist[1] > right_shoulder[1]:

pass
else:
if right_wrist[0] < self.right_wrist[0]:
direction = "left"
else:
direction = "right"

if self.direction is None:

self.direction = direction # first direction data point
else:
check if hand changes direction
if direction != self.direction:
self.num_direction_changes += 1
every two hand direction changes == one wave

if self.num_direction_changes >= 2:
self.num_waves += 1
self.num_direction_changes = 0 # reset direction count

self.right_wrist = right_wrist # save last position
self.direction = direction

(continues on next page)

26

Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

185 wave_str = f'"#waves = {self.num_waves}"
186 draw_text(img, 20, 30, wave_str, YELLOW)
187

188 return {}

This (long) piece of code implements our custom dabble node. It defines three helper functions to convert
relative to absolute coordinates and to draw text on-screen. The number of hand waves is displayed at the top-left
corner of the screen.

A simple heuristic is used to count the number of times the person waves his hand. It tracks the direction in
which the right wrist is moving and notes when the wrist changes direction. Upon encountering two direction
changes, e.g., left -> right -> left, one wave is counted.

The heuristic also waits until the right wrist has been lifted above the right shoulder before it starts tracking hand
direction and counting waves.

3. pipeline_config.yml:

1 |nodes:

2 |- input.visual:

3 source: wave.mp4d
4+ |- model.yolo

5 |- model.posenet

¢ |- dabble.fps

7 | - custom_nodes.dabble.wave
¢ |- draw.pose

o |- draw.legend:

10 show: ["fps"]

1 |- output.screen

We modify pipeline_config.yml to run both the object detection and pose estimation models to obtain the
required inputs for our custom dabble node.

Execute peekingduck run to see your custom node in action.

Note: Royalty free video of man waving from: https://www.youtube.com/watch?v=IKj_z2hgYUM

3.3.3 Recipe 3: Debugging

When working with PeekingDuck’s pipeline, you may sometimes wonder what is available in the data pool, or whether
a particular data object has been correctly computed. This tutorial will show you how to use a custom node to help
with troubleshooting and debugging PeekingDuck’s pipeline.

Continuing from the above tutorial, create a new dabble.debug custom node:

Terminal Session

[~user/wave_project] > peekingduck create-node

Creating new custom node. ..

Enter node directory relative to ~user/wave_project [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): dabble

3.3. Custom Nodes 27

https://www.youtube.com/watch?v=IKj_z2hgYUM

PeekingDuck, Release developer

FPS: 16711

Fig. 7: Custom Node Counting Hand Waves

BBox 0.70

Enter node name [my_custom_node]: debug

Node directory: ~user/wave_project/src/custom_nodes

Node type: dabble
Node name: debug

Creating the following files:

Config file: ~user/wave_project/src/custom_nodes/configs/dabble/debug.yml
Script file: ~user/wave_project/src/custom_nodes/dabble/debug.py

Proceed? [Y/n]:
Created node!

The updated folder structure is:

wave_project/

— pipeline_config.yml
— src
L— custom_nodes
configs
L— dabble
debug.yml
wave.yml
dabble
debug.py
wave.py
L— wave.mp4d

Make the following three changes:

28

Chapter 3. Tutorials

PeekingDuck, Release developer

1. Define debug.yml to receive “all” inputs from the pipeline, as follows:

Mandatory configs
input: ["all"]
output: ["none"]

No optional configs

2. Update debug. py as shown below:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Show/Hide Code for debug.py

mirn

A custom node for debugging

mirn

from typing import Any, Dict

from peekingduck.nodes.abstract_node import AbstractNode

class Node(AbstractNode):

Args:
config (:obj: Dict[str, Any]" | :obj: None'): Node configuration.

e

def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
super().__init__(config, node_path=__name__, **kwargs)

def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
"""A simple debugging custom node

Args:
inputs (dict): "all", to view everything in data pool

Returns:
outputs (dict): "none"

i

self.logger.info("-- debug --")

show what is available in PeekingDuck's data pool

self.logger.info(f"input.keys={list(inputs.keys()}")

debug specific data: bboxes

bboxes = inputs['"bboxes"]

bbox_labels = inputs["bbox_labels"]

bbox_scores = inputs["bbox_scores"]

self.logger.info(f"num bboxes={len(bboxes) }")

for i, bbox in enumerate(bboxes):
label, score = bbox_labels[i], bbox_scores[i]
self.logger.info(f"bbox {i}:")
self.logger.info(f" 1label={label}, score={score:0.2f}")
self.logger.info(f" coords={bbox}")

"""This is a simple example of creating a custom node to help with debugging.

(continues on next page)

3.3

. Custom Nodes

29

PeekingDuck, Release developer

(continued from previous page)

43

44 return {} # no outputs

The custom node code shows how to see what is available in PeekingDuck’s pipeline data pool by printing the
input dictionary keys. It also demonstrates how to debug a specific data object, such as bboxes, by printing
relevant information for each item within the data.

3. Update pipeline_config.yml:

1 |nodes:

» |- input.visual:

3 source: wave.mp4

+ |- model.yolo

s |- model.posenet

¢ |- dabble.fps

7 | - custom_nodes.dabble.wave
¢ |- custom_nodes.dabble.debug
9 |- draw.pose

0 |- draw.legend:

1" show: ["fps"]

1 |- output.screen

Now, do a peekingduck run and you should see a sample debug output like the one below:

Terminal Session

[~user/wave_project] > peekingduck run
2022-03-02 18:42:51 peekingduck.declarative_loader INFO: Successfully loaded pipeline_config file.
2022-03-02 18:42:51 peekingduck.declarative_loader INFO: Initializing input.visual node...

2022-03-02 18:42:51 peekingduck.declarative_loader INFO: Config for node input.visual is updated to: ‘source’:
wave.mp4

2022-03-02 18:42:51 peekingduck.nodes.input.visual INFO: Video/Image size: 710 by 540
2022-03-02 18:42:51 peekingduck.nodes.input.visual INFO: Filepath used: wave.mp4
2022-03-02 18:42:51 peekingduck.declarative_loader INFO: Initializing model.yolo node...
[... many lines of output deleted here ...]
2022-03-02 18:42:53 peekingduck.declarative_loader INFO: Initializing custom_nodes.dabble.debug node...
2022-03-02 18:42:53 peekingduck.declarative_loader INFO: Initializing draw.pose node...
2022-03-02 18:42:53 peekingduck.declarative_loader INFO: Initializing draw.legend node...
2022-03-02 18:42:53 peekingduck.declarative_loader INFO: Initializing output.screen node...
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: — debug —
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: input.keys=[‘img’, ‘pipeline_end’, ‘filename’,
‘saved_video_fps’, ‘bboxes’, ‘bbox_labels’, ‘bbox_scores’, ‘keypoints’, ‘keypoint_scores’, ‘keypoint_conns’,
‘hand_direction’, ‘num_waves’, ‘fps’]
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: num bboxes=1
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: bbox 0:
2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: label=Person, score=0.91

2022-03-02 18:42:55 custom_nodes.dabble.debug INFO: coords=[0.40047657 0.21553655 0.85199741
1.02150181]

30 Chapter 3. Tutorials

PeekingDuck, Release developer

3.3.4 Other Recipes to Create Custom Nodes

This section describes two faster ways to create custom nodes for users who are familiar with PeekingDuck.

CLI Recipe

You can skip the step-by-step prompts from peekingduck create-node by specifying all the options on the command
line, for instance:

Terminal Session

[~user/wave_project] > peekingduck create-node --node_subdir src/custom_nodes --node_type dabble --node_name
wave

The above is the equivalent of the tutorial Recipe 1: Object Detection Score custom node creation. For more informa-
tion, see peekingduck create-node --help.

Pipeline Recipe

PeekingDuck can also create custom nodes by parsing your pipeline configuration file. Starting with the basic folder
structure from peekingduck init:

wave_project/
pipeline_config.yml
src
L— custom_nodes
L— configs
wave .mp4

and the following modified pipeline_config.yml file:

1 |nodes:

» |- input.visual:

3 source: wave.mp4

4+ |- model.yolo

s | - model.posenet

s |- dabble. fps

7 | - custom_nodes.dabble.wave
s | - custom_nodes.dabble.debug
9 |- draw.pose

o |- draw.legend:

1" show: ["fps"]

2 |- output.screen

You can tell PeekingDuck to parse your pipeline file with peekingduck create-node --config_path pipeline_config.yml:

Terminal Session

3.3. Custom Nodes 31

PeekingDuck, Release developer

[~user/wave_project] > peekingduck create-node --config_path pipeline_config.yml
2022-03-14 11:21:21 peekingduck.cli INFO: Creating custom nodes declared in
~user/wave_project/pipeline_config.yml.
2022-03-14 11:21:21 peekingduck.declarative_loader INFO: Successfully loaded pipeline file.
2022-03-14 11:21:21 peekingduck.cli INFO: Creating files for custom_nodes.dabble.wave:
Config file: ~user/wave_project/src/custom_nodes/configs/dabble/wave.yml
Script file: ~user/wave_project/src/custom_nodes/dabble/wave.py
2022-03-14 11:21:21 peekingduck.cli INFO: Creating files for custom_nodes.dabble.debug:
Config file: ~user/wave_project/src/custom_nodes/configs/dabble/debug.yml
Script file: ~user/wave_project/src/custom_nodes/dabble/debug.py

PeekingDuck will read pipeline_config.yml and create the two specified custom nodes custom_nodes.dabble.
wave and custom_nodes.dabble.debug. Your folder structure will now look like this:

wave_project/

— pipeline_config.yml
— src
L— custom_nodes
configs
L— dabble
debug.yml
wave.yml
dabble
debug.py
wave.py
L— wave.mp4

From here, you can proceed to edit the custom node configs and source files.

3.4 Peaking Duck

PeekingDuck includes some “power” nodes that are capable of processing the contents or outputs of the other nodes and
to accumulate information over time. An example is the dabble.statistics node which can accumulate statistical
information, such as calculating the cumulative average and maximum of particular objects (like people or cars). This
tutorial presents advanced recipes to showcase the power features of PeekingDuck, such as using dabble.statistics
for object counting and tracking.

3.4.1 Interfacing with SQL

This tutorial demonstrates how to save data to an SQLite database. We will extend the tutorial for counting hand waves
with a new custom output node that writes information into a local SQLite database.

Note: The above tutorial assumes sqlite3 has been installed in your system. If your system does not
have sqlite3, please see the SQLite Home Page for installation instructions.

First, create a new custom output.sqlite node in the custom_project folder:

Terminal Session

32 Chapter 3. Tutorials

http://www.sqlite.org/

PeekingDuck, Release developer

[~user/wave_project] > peekingduck create-node

Creating new custom node.. .

Enter node directory relative to ~user/wave_project [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): output
Enter node name [my_custom_node]: sqlite

Node directory: ~user/wave_project/src/custom_nodes
Node type: output
Node name: sqlite

Creating the following files:
Config file: ~user/wave_project/src/custom_nodes/configs/output/sqlite.yml
Script file: ~user/wave_project/src/custom_nodes/output/sqlite.py

Proceed? [Y/n]:

Created node!

The updated folder structure would be:

wave_project/
— pipeline_config.yml
— src/
L— custom_nodes/
— configs/
dabble/
L— wave.yml
output/
L— sqlite.yml
— dabble/
L— wave.py
L— output/
L sqlite.py

L— wave.mp4
Edit the following five files as described below:

1. src/custom_nodes/configs/output/sqlite.yml:

1 |# Mandatory configs
» |input: ["hand_direction", "num_waves"]
;3 |output: ["none"]

s |# No optional configs

The new output.sqlite custom node will take in the hand direction and the current number of hand waves to
save to the external database.

2. src/custom_nodes/output/sqlite.py:

Show/Hide Code for sqlite.py

mirn

» | Custom node to save data to external database.

(continues on next page)

3.4. Peaking Duck 33

PeekingDuck, Release developer

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

(continued from previous page)

mirn

from typing import Any, Dict

from datetime import datetime

from peekingduck.nodes.abstract_node import AbstractNode
import sqlite3

DB_FILE = "wave.db" # name of database file

class Node(AbstractNode):
"""Custom node to save hand direction and current wave count to database.

Args:
config (:obj:Dict[str, Any]® | :obj: None'): Node configuration.

i

def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
super() .__init__(config, node_path=__name__, **kwargs)

self.conn = None
try:
try to establish connection to database,
will create DB_FILE if it does not exist
self.conn = sqlite3.connect(DB_FILE)
self.logger.info(f"Connected to {DB_FILE}")
sgl = """ CREATE TABLE IF NOT EXISTS wavetable (
datetime text,
hand_direction text,
wave_count integer
DR
cur = self.conn.cursor()
cur.execute(sql)
except sqlite3.Error as e:
self.logger.info(£"SQL Error: {e}")

def update_db(self, hand_direction: str, num_waves: int) -> None:

"""Helper function to save current time stamp, hand direction and

wave count into DB wavetable.

now = datetime.now()

dt_str = f"{now:%Y-%m-%d %H:%M:%S}"

sql = """ INSERT INTO wavetable(datetime,hand_direction,wave_count)
values (?,7,7) """

cur = self.conn.cursor()

cur.execute(sql, (dt_str, hand_direction, num_waves))

self.conn.commit()

def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
"""Node to output hand wave data into sqlite database.

Args:

(continues on next page)

34

Chapter 3. Tutorials

PeekingDuck, Release developer

55

56

57

58

59

60

61

62

63

64

65

173

174

175

176

177

(continued from previous page)

inputs (dict): Dictionary with keys "hand_direction", "num_waves"

Returns:
outputs (dict): Empty dictionary

i

hand_direction = inputs["hand_direction"]
num_waves = inputs['"num_waves"]
self.update_db(hand_direction, num_waves)

return {}

This tutorial uses the sqlite3 package to interface with the database.

On first run, the node initializer will create the wave.db database file. It will establish a connection to the
database and create a table called wavetable if it does not exist. This table is used to store the hand direction
and wave count data.

A helper function update_db is called to update the database. It saves the current date time stamp, hand direction
and wave count into the wavetable.

The node’s run method retrieves the required inputs from the pipeline’s data pool and calls self.update_db
to save the data.

src/custom_nodes/configs/dabble/wave.yml:

Dabble node has both input and output
input: ["img", "bboxes", "bbox_scores", "keypoints", "keypoint_scores"]
output: ["hand_direction", "num_waves"]

No optional configs

To support the output . sqlite custom node’s input requirements, we need to modify the dabble.wave custom
node to return the current hand direction hand_direction and the current wave count num_waves.

src/custom_nodes/dabble/wave.py:

same as previous

return {
"hand_direction": self.direction if self.direction is not None else "None",
"num_waves": self.num_waves,

This file is the same as the wave.py in the counting hand waves tutorial, except for the changes in the last few
lines as shown above. These changes outputs the hand_direction and num_waves to the pipeline’s data pool
for subsequent consumption by the output.sqlite custom node.

5. pipeline_config.yml:

same as previous
- custom_nodes.output.sqlite

Likewise, the pipeline is the same as in the previous tutorial, except for line 12 that has been added to call the
new custom node.

Run this project with peekingduck run and when completed, a new wave.db sqlite database file would be created in
the current folder. Examine the created database as follows:

3.4. Peaking Duck 35

PeekingDuck, Release developer

Terminal Session

[~user/wave_project] > sqlite3
SQLite version 3.37.0 2021-11-27 14:13:22
Enter “.help” for usage hints.
Connected to a transient in-memory database.
Use “.open FILENAME” to reopen on a persistent database.
sqlite> .open wave.db
sqlite> .schema wavetable
CREATE TABLE wavetable (

datetime text,

hand_direction text,

wave_count integer

);

sqlite> select * from wavetable where wave_count > 0 limit 5;
2022-02-15 19:26:16|left|1
2022-02-15 19:26:16]right|1
2022-02-15 19:26:16|left|2
2022-02-15 19:26:16]right|2
2022-02-15 19:26:16]right|2
sqlite> select * from wavetable order by datetime desc limit 5;
2022-02-15 19:26:44|right|72
2022-02-15 19:26:44]right|72
2022-02-15 19:26:44]right|72
2022-02-15 19:26:44]right|72
2022-02-15 19:26:43|right|70

Press CTRL-D to exit from sqlite3.

3.4.2 Counting Cars

This tutorial demonstrates using the dabble.statistics node to count the number of cars traveling across a highway

over time and the draw. legend node to display the relevant statistics.

Create a new PeekingDuck project, download the highway cars video and save it into the project folder.

Terminal Session

[~user] > mkdir car_project
[~user] > cd car_project
[~user/car_project] > peekingduck init

36

Chapter 3. Tutorials

https://storage.googleapis.com/peekingduck/videos/highway_cars.mp4

PeekingDuck, Release developer

The car_project folder structure:
car_project/
highway_cars.mp4
pipeline_config.yml
src

L— custom_nodes
L— configs

Edit pipeline_config.yml as follows:

| |nodes:

» |- input.visual:

3 source: highway_cars.mp4
+ |- model.yolo:

s detect: ["car'"]

s score_threshold: 0.3

7 |- dabble.bbox_count
s |- dabble. fps
o |- dabble.statistics:

10 identity: count

1 |- draw.bbox

2 |- draw.legend:

13 show: ["fps", "count", "cum_max", "cum_min"]
4 |- output.screen

Run it with peekingduck run and you should see a video of cars travelling across a highway with a legend box on
the bottom left showing the realtime count of the number of cars on-screen, the cumulative maximum and minimum
number of cars detected since the video started. The sample screenshot below shows:

¢ the count that there are currently 3 cars on-screen
* the cumulative maximum number of cars “seen” previously was 5

¢ the cumulative minimum number of cars was 1

Fig. 8: Counting Cars on a Highway

3.4. Peaking Duck 37

PeekingDuck, Release developer

Note: Royalty free video of cars on highway from: https://www.youtube.com/watch?v=8yP1gjg4b2w

3.4.3 Object Tracking

Object tracking is the application of CV models to automatically detect objects in a video and to assign a unique identity
to each of them. These objects can be either living (e.g. person) or non-living (e.g. car). As they move around in the
video, these objects are identified based on their assigned identities and tracked according to their movements.

This tutorial demonstrates using dabble.statistics with a custom node to track the number of people walking
down a path.

Create a new PeekingDuck project, download the people walking video and save it into the project folder.

Terminal Session

[~user] > mkdir people_walking
[~user] > cd people_walking
[~user/people_walking] > peekingduck init

Create the following pipeline_config.yml:

1 |nodes:

2 |- input.visual:

3 source: people_walking.mp4
+ |- model.yolo:

5 detect: ["person'"]

¢ |- dabble.tracking
7 |- dabble.statistics:

8 maximum: obj_attrs["ids"]

9 |- dabble.fps

0 |- draw.bbox

n |- draw.tag:

12 show: ["ids"]

3 |- draw.legend:

14 show: ["fps", "cum_max", "cum_min", "cum_avg"]
15 |- output.screen

The above pipeline uses the YOLO model to detect people in the video and uses the dabble. tracking node to track
the people as they walk. Each person is assigned a tracking ID and dabble.tracking returns a list of tracking IDs.
dabble.statistics is used to process these tracking IDs: since each person is assigned a monotonically increasing
integer ID, the maximum ID within the list tells us the number of persons tracked so far. draw. tag shows the ID above
the tracked person. draw.legend is used to display the various statistics: the FPS, and the cumulative maximum,
minimum and average relating to the number of persons tracked.

Do a peekingduck run and you will see the following display:

Note: Royalty free video of people walking from: https://www.youtube.com/watch?v=du74nvmRUzo

38 Chapter 3. Tutorials

https://www.youtube.com/watch?v=8yP1gjg4b2w
https://storage.googleapis.com/peekingduck/videos/people_walking.mp4
https://www.youtube.com/watch?v=du74nvmRUzo

PeekingDuck, Release developer

Fig. 9: People Walking

Tracking People within a Zone

Suppose we are only interested in people walking down the center of the video (imagine a carpet running down the
middle). We can create a custom node to tell PeekingDuck to focus on the middle zone, by filtering away the detected
bounding boxes outside the zone.

Start by creating a custom node dabble. filter_bbox:

Terminal Session

[~user/people_walking] > peekingduck create-node

Creating new custom node. ..

Enter node directory relative to ~user/people_walking [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): dabble
Enter node name [my_custom_node]: filter_bbox

Node directory: ~user/people_walking/src/custom_nodes
Node type: dabble
Node name: filter_bbox

Creating the following files:
Config file: ~user/people_walking/src/custom_nodes/configs/dabble/filter_bbox.yml
Script file: ~user/people_walking/src/custom_nodes/dabble/filter_bbox.py

Proceed? [Y/n]:

Created node!

The folder structure looks like this:

3.4. Peaking Duck 39

PeekingDuck, Release developer

people_walking/

people_walking.mp4
pipeline_config.yml

src
L— custom_nodes
configs
L dabble
L filter_bbox.yml
dabble

L— filter_bbox.py

Change pipeline_config.yml to the following:

| |nodes:

» |- input.visual:

3 source: people_walking.mp4

+ |- model.yolo:

5 detect: ["person'"]

¢ |- dabble.bbox_to_btm_midpoint

7 | - dabble.zone_count:

8 resolution: [720, 480]

9 zones: [

10 [[06.35,0], [0.65,0], [0.65,1], [0.35,11]7,
11]

2 |- custom_nodes.dabble.filter_bbox:

13 zones: [

14 [[0.35,0], [0.65,0], [0.65,1], [0.35,1]1],
5]

16 |- dabble.tracking
7 |- dabble.statistics:

18 maximum: obj_attrs["ids"]

v |- dabble.fps

» |- draw.bbox

a |- draw.zone

» |- draw.tag:

2 show: ["ids"]

» |- draw.legend:

2 show: ["fps", "cum_max", "cum_min", "cum_avg", "zone_count"]
% |- output.screen

We make use of dabble.zone_count and dabble.bbox_to_btm_midpoint nodes to create a zone in the middle.
The zone is defined by a rectangle with the four corners (0.35, 0.0) - (0.65, 0.0) - (0.65, 1.0) - (0.35, 1.0). (For more info,
see Zone Counting) This zone is also defined in our custom node dabble. filter_bbox for bounding box filtering.
What dabble. filter_bbox will do is to take the list of bboxes as input and output a list of bboxes within the zone,
dropping all bboxes outside it. Then, dabble. tracking is used to track the people walking and dabble.statistics
is used to determine the number of people walking in the zone, by getting the maximum of the tracked IDs. draw.
legend has a new item zone_count which displays the number of people walking in the zone currently.

The filter_bbox.yml and filter_bbox.py files are shown below:
1. src/custom_nodes/configs/dabble/filter_bbox.yml:

1 |# Mandatory configs
> |input: ["bboxes"]
; |output: ["bboxes"]

(continues on next page)

40

Chapter 3. Tutorials

PeekingDuck, Release developer

6

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

(continued from previous page)

zones: [
(fe,e1, 0,11, [1,11, [1,01],

Note: The zones default value of [[0,0], [0,1], [1,1], [1,0]] will be overridden by those specified
in pipeline_config.yml above. See Configuration - Behind The Scenes for more details.

src/custom_nodes/dabble/filter_bbox.py:
Show/Hide Code for filter_bbox.py

mirn

Custom node to filter bboxes outside a zone

mirn

from typing import Any, Dict
import numpy as np
from peekingduck.nodes.abstract_node import AbstractNode

class Node(AbstractNode):
"""Custom node to filter bboxes outside a zone

Args:
config (:obj: Dict[str, Any]" | :obj: None'): Node configuration.

o

def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
super().__init__(config, node_path=__name__, **kwargs)

def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
"""Checks bounding box x-coordinates against the zone left and right borders.
Retain bounding box if within, otherwise discard it.

Args:
inputs (dict): Dictionary with keys "bboxes"

Returns:
outputs (dict): Dictionary with keys "bboxes".
bboxes = inputs['bboxes"]
zones = self.config["zones"]
zone = zones[0] # only work with one zone currently
convert zone with 4 points to a zone bbox with (x1, yl1), (x2, y2)
x1, yl1 = zone[0]
x2, y2 = zone[2]
zone_bbox = np.asarray([x1l, y1, x2, y2])

retained_bboxes = []
for bbox in bboxes:

(continues on next page)

3.4.

Peaking Duck 41

PeekingDuck, Release developer

(continued from previous page)

40 # filter by left and right borders (ignore top and bottom)
4 if bbox[0] > zone_bbox[0] and bbox[2] < zone_bbox[2]:

2 retained_bboxes.append (bbox)

43

44 return {"bboxes": np.asarray(retained_bboxes)}

Do a peekingduck run and you will see the following display:

Fig. 10: Count People Walking in a Zone

3.4.4 Using Callbacks

While PeekingDuck allows you to extend its capabilities through custom nodes, it may not be the most optimal/efficient
approach in some cases. For example, if you are trying to bring in PeekingDuck into an existing codebase/project, it
may not be desirable to refactor the existing codebase such that it can be constructed/initialized in a custom node.

42 Chapter 3. Tutorials

PeekingDuck, Release developer

Introduction to Using Callbacks in PeekingDuck

Callbacks are externally defined functions/methods which are invoked as specific points of a PeekingDuck pipeline
and can interact with code/systems outside of PeekingDuck. They can be registered to nodes in a pipeline using the
callbacks config option.

Pipeline Events

The following pipeline events and their respective event keys are implemented:
1. run_begin: Invoked before a Node’s run() method.
2. run_end: Invoked after a Nodes’s run() method.

For example, in the following pipeline config:

1 |nodes:

» |- input.visual

3 |- model.posenet:

4 callbacks:

s run_begin: [<callback 1>]

6 run_end: [<callback 2>, <callback 3>, <callback 4>]
7 | - draw.pose

s |- output.screen

After a image frame is read by input.visual, <callback 1> is invoked, followed by model.posenet’s run()
method, then <callback 2>, <callback 3>, and <callback 4> are invoked after that.

Callback Definition

Callback definition, i.e. <callback 1> and <callback 2> in the previous example, follows a strict format. The
following definition has been written using the EBNF notation:

callback definition = module part, "::", callback part
module part = { subdir name, "." }, script name
callback part = function
| class name, "::", method
| instance name, "::", instance method
script name = ? name of callback Python script ?
subdir name = ? name of individual subdirectory folders relative to
—"callbacks" folder 7
class name = ? name of class which contains the callback methods ?
instance name = ? name of instantiated object which contains the callback.
—method ?
function = ? name of callback function ?
method = ? name of class/static methods ?
instance method = ? name of instance method ?

When using <instance name>::<instance method> for callback part, the instance object has to be in the
script’s global scope.

The callbacks directory, which houses the scripts containing the callback functions, is expected to be at the same
location of the pipeline config file. For example, given the following directory structure and file contents:

3.4. Peaking Duck 43

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

PeekingDuck, Release developer

callbacks_project/

|: pipeline_config.yml
callbacks/

I: my_callback.py
cb_dir/
L— my_cb.py

1. callbacks/my_callback.py
Show/Hide Code for my_callback.py

1 |def general_function(data_pool):

2 print("Called general_function")
3 filename = data_pool["filename"]
4 print(f" filename={filename}")

7 | class MyCallbackClass:

8 @staticmethod

9 def the_static_method(data_pool):

10 print("Called the_static_method")

11

12 @classmethod

13 def the_class_method(cls, data_pool):

14 print("Called the_class_method")

15

16 def the_instance_method(self, data_pool):

17 print("Called the_instance_method")

18 kp_scores = data_pool["keypoint_scores"][0]
19 print(f" num_keypoint_scores={len(kp_scores) ")

20
21
»n |# my_callback_obj has to be visible from my_callback.py's global scope
» |# to enable access to the_instance_method()

u |my_callback_obj = MyCallbackClass()

2. callbacks/cb_dir/my_cb.py
Show/Hide Code for my_cb.py

i | def my_cb_function(data_pool):
2 print("Called my_cb_function™)
The various callback functions and methods can be registered in pipeline_config.yml as follows:
1 |nodes:
> |- input.visual:
3 source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
+ | - model.posenet:
5 callbacks:
6 run_begin:
7 [
8 "my_callback: :MyCallbackClass: :the_static_method",
9 "my_callback: :MyCallbackClass: :the_class_method",
10]

(continues on next page)

44 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

1" run_end:

12 [

"my_callback: :general_function",

"my_callback: :my_callback_obj::the_static_method",
"my_callback: :my_callback_obj::the_class_method",
"my_callback: :my_callback_obj::the_instance_method",

"cb_dir.my_cb: :my_cb_function",

18]
v |- draw.pose
» |- output.screen

The following table illustrates how the callback definitions map to their respective callback functions:

Definition Function Script location
my_callback: :general_function general_function() callbacks/
my_callback: :MyCallbackClass: :the_stat yGedtltbadtkClass. my_callback.py
my_callback: :my_callback_obj: :the_statithenesttedd c_method O
my_callback::MyCallbackClass: :the_clasdyfetiHdchckClass.

my_callback: :my_callback_obj::the_classheeideds_method ()

my_callback:

:my_callback_obj:

:the_ins

t My Inldiduklass: : the_instancel method ()

cb_dir.my_ch:

:my_cb_function

my_cb_function()

callbacks/cb_dir/
my_cb.py

Running the pipeline with peekingduck run should give the following output:

Terminal Session

[Truncated]

2022-12-01 17:33:23 peekingduck.declarative_loader INFO: Config for node model.posenet is updated
to: ‘callbacks’: {‘run_begin’: [‘my_callback::MyCallbackClass::the_static_method’,
‘my_callback::MyCallbackClass::the_class_method’], ‘run_end’: [‘my_callback::general_function’,
‘my_callback::my_callback_obj::the_static_method’,
‘my_callback::my_callback_obj::the_class_method’,
‘my_callback::my_callback_obj::the_instance_method’, ‘cb_dir.my_cb::my_cb_function’]}

2022-12-01 17:33:23 peekingduck.nodes.model.posenetv1.posenet_files.predictor INFO: PoseNet model
loaded with following configs:

Model type: resnet,

Input resolution: (225, 225),

Max pose detection: 10,

Score threshold: 0.4
2022-12-01 17:33:26 peekingduck.declarative_loader INFO: Initializing draw.pose node. ..
2022-12-01 17:33:26 peekingduck.declarative_loader INFO: Initializing output.screen node. ..
Called the_static_method
Called the_class_method
Called general_function

filename=video.mp4
Called the_static_method

3.4. Peaking Duck

45

PeekingDuck, Release developer

Called the_class_method
Called the_instance_method

num_keypoint_scores=17
Called my_cb_function

[Truncated]

Interfacing with SQL Using Callbacks

This tutorial replicates the earlier /nferfacing with SOL tutorial but uses callbacks instead of custom nodes.

Note: The above tutorial assumes sqlite3 has been installed in your system. If your system does not
have sqlite3, please see the SQLite Home Page for installation instructions.

The following steps are necessary to prepare the files and folder structure required for this tutorial:
1. Create and initialize a new PeekingDuck project in a folder named callbacks_wave_project.
2. Create a dabble.wave custom node.
3. Create a sql_callback.py in the callbacks/ folder.
4. Copy wave.mp4 into the folder.
You should end up with the following folder structure:

callbacks_wave_project/

— pipeline_config.yml

— callbacks/

L— sql_callback.py

— src/

L— custom_nodes/
configs/
L— dabble/

L— wave.yml

dabble/
L— wave.py

— wave.mp4
Edit the following files as described below:

1. src/custom_nodes/configs/dabble/wave.yml:

1 | # Dabble node has both input and output
» |input: ["img", "bboxes", "bbox_scores", "keypoints", "keypoint_scores"]
3 |output: ["hand_direction", "num_waves"]

s |callbacks: {}

The additional callbacks: {} config allows us to override it later in pipeline_config.yml to define the

callback functions to use.

2. src/custom_nodes/dabble/wave.py:

46 Chapter 3. Tutorials

http://www.sqlite.org/
https://storage.googleapis.com/peekingduck/videos/wave.mp4

PeekingDuck, Release developer

20

21

22

23

2

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Show/Hide Code for wave.py

mirn

Custom node to show keypoints and count the number of times the person's hand is.
—waved

mirn

from typing import Any, Dict, List, Tuple

import cv2
from peekingduck.pipeline.nodes.abstract_node import AbstractNode

setup global constants

FONT = cv2.FONT_HERSHEY_SIMPLEX

WHITE = (255, 255, 255) # opencv loads file in BGR format
YELLOW = (0, 255, 255)

THRESHOLD = 0.6 # ignore keypoints below this threshold
KP_RIGHT_SHOULDER = 6 # PoselNet's skeletal keypoints
KP_RIGHT_WRIST = 10

def map_bbox_to_image_coords (
bbox: List[float], image_size: Tuple[int, int]
) -> Tuple[int, ...]:
"""First helper function to convert relative bounding box coordinates to
absolute image coordinates.
Bounding box coords ranges from 0 to 1
where (0, 0) = image top-left, (1, 1) = image bottom-right.

Args:
bbox (List[float]): List of 4 floats x1, yl, x2, y2
image_size (Tuple[int, int]): Width, Height of image

Returns:

Tuple[int, ...]: x1, yl, x2, y2 in integer image coords
width, height = image_size[0], image_size[1]
x1, yl1, x2, y2 = bbox

x1 *= width
x2 *= width
yl *= height
y2 *= height

return int(x1), int(yl), int(x2), int(y2)

def map_keypoint_to_image_coords(
keypoint: List[float], image_size: Tuple[int, int]
) -> Tuple[int, ...]:
"""Second helper function to convert relative keypoint coordinates to
absolute image coordinates.
Keypoint coords ranges from 0 to 1
where (0, 0) = image top-left, (1, 1) = image bottom-right.

Args:

(continues on next page)

3.4.

Peaking Duck 47

PeekingDuck, Release developer

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

(continued from previous page)

bbox (List[float]): List of 2 floats x, y (relative)
image_size (Tuple[int, int]): Width, Height of image

Returns:
Tuple[int, ...]: x, y in integer image coords
width, height = image_size[0], image_size[1]
x, y = keypoint
X *= width
y *= height
return int(x), int(y)

def draw_text(img, x, y, text_str: str, color_code):

"""Helper function to call opencv's drawing function,
to improve code readability in node's run() method.
cv2.putText(

img=img,

text=text_str,

org=(x, y),

fontFace=cv2.FONT_HERSHEY_SIMPLEX,

fontScale=0.4,

color=color_code,

thickness=2,

class Node(AbstractNode):
"""Custom node to display keypoints and count number of hand waves

Args:
config (:obj:Dict[str, Any] | :obj: None'): Node configuration.

i

def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
super().__init__(config, node_path=__name__, **kwargs)
setup object working variables
self.right_wrist = None
self.direction = None
self.num_direction_changes = 0
self.num_waves = 0

def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
"""This node draws keypoints and count hand waves.

Args:
inputs (dict): Dictionary with keys
"img", "bboxes", "bbox_scores", "keypoints'", "keypoint_scores".

Returns:
outputs (dict): Empty dictionary.

o

get required inputs from pipeline

(continues on next page)

48

Chapter 3. Tutorials

PeekingDuck, Release developer

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

(continued from previous page)

img = inputs["img"]

bboxes = inputs["bboxes"]

bbox_scores = inputs["bbox_scores"]
keypoints = inputs["keypoints"]
keypoint_scores = inputs['keypoint_scores"]

img_size = (img.shape[l], img.shape[0]) # image width, height

get bounding box confidence score and draw it at the

left-bottom (x1, y2) corner of the bounding box (offset by 30 pixels)
the_bbox = bboxes[0] # image only has one person

the_bbox_score = bbox_scores[0] # only one set of scores

x1, yl, x2, y2 = map_bbox_to_image_coords(the_bbox, img_size)
score_str = f"BBox {the_bbox_score:0.2f}"
cv2.putText(
img=img,
text=score_str,
org=(x1, y2 - 30), # offset by 30 pixels
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0,
color=WHITE,
thickness=3,

hand wave detection using a simple heuristic of tracking the

right wrist movement

the_keypoints = keypoints[0] # image only has one person
the_keypoint_scores = keypoint_scores[0] # only one set of scores
right_wrist = None

right_shoulder = None

for i, keypoints in enumerate(the_keypoints):
keypoint_score = the_keypoint_scores[i]

if keypoint_score >= THRESHOLD:
X, ¥y = map_keypoint_to_image_coords(keypoints.tolist(), img_size)
x_y_str = f"({x}, {yD"

if i == KP_RIGHT_SHOULDER:
right_shoulder = keypoints
the_color = YELLOW

elif i == KP_RIGHT_WRIST:
right_wrist = keypoints
the_color = YELLOW

else: # generic keypoint
the_color = WHITE

draw_text(img, x, y, X_y_str, the_color)

if right_wrist is not None and right_shoulder is not None:
only count number of hand waves after we have gotten the

(continues on next page)

3.4.

Peaking Duck

49

PeekingDuck, Release developer

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

(continued from previous page)

skeletal poses for the right wrist and right shoulder
if self.right_wrist is None:
self.right_wrist = right_wrist # first wrist data point
else:
wait for wrist to be above shoulder to count hand wave
if right_wrist[1] > right_shoulder[1]:

pass
else:
if right_wrist[0] < self.right_wrist[0]:
direction = "left"
else:
direction = "right"

if self.direction is None:
self.direction = direction # first direction data point
else:
check if hand changes direction
if direction != self.direction:
self.num_direction_changes += 1
every two hand direction changes == one wave
if self.num_direction_changes >= 2:
self.num_waves += 1
self.num_direction_changes = 0 # reset direction count

self.right_wrist = right_wrist # save last position
self.direction = direction

wave_str = f"#waves = {self.num_waves}"
draw_text(img, 20, 30, wave_str, YELLOW)

return {
"hand_direction": self.direction if self.direction is not None else
—"None",
"num_waves": self.num_waves,
}

Note that we still use a custom node for the “wave” logic as we need to produce custom outputs such as
hand_direction and num_waves.

callbacks/sql_callback.py:
Show/Hide Code for sql_callback.py

mirn

Callbacks for interacting with an external database.

mirn

import logging
import sqlite3
from datetime import datetime
from typing import Any, Dict

DB_FILE = "wave.db" # name of database file

(continues on next page)

50

Chapter 3. Tutorials

PeekingDuck, Release developer

20

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

(continued from previous page)

class SQLCallback:
"""Interacts with a SQLite database and provides a callback method to
trigger updates.

i

def __init__(self) -> None:
self.logger = logging.getlLogger(__name__)
self.conn = None
try:
self.conn = sqlite3.connect(DB_FILE)
self.logger.info(f"Connected to {DB_FILE}")
sql = """ CREATE TABLE IF NOT EXISTS wavetable (
datetime text,
hand_direction text,
wave_count integer
D
cur = self.conn.cursor()
cur.execute(sql)
except sqglite3.Error as e:
self.logger.info(f"SQL Error: {e}")

def track_wave_callback(self, data_pool: Dict[str, Any]) -> None:
hand_direction = data_pool["hand_direction"]
num_waves = data_pool["num_waves"]
self.update_db(hand_direction, num_waves)

def update_db(self, hand_direction: str, num_waves: int) -> None:

"""Helper function to save current time stamp, hand direction and

wave count into DB wavetable.

now = datetime.now()

dt_str = £"{now:%Y-%m-%d %H:%M:%S}"

sql = """ INSERT INTO wavetable(datetime,hand_direction,wave_count)
values (?,?,?) """

cur = self.conn.cursor()

cur.execute(sql, (dt_str, hand_direction, num_waves))

self.conn.commit()

sql_callback_obj = SQLCallback()

We have recreated the output.sqlite node into a standalone class. As it no longer inherits
from AbstractNode, having a run() method is not necessary anymore. Instead, we implement a
track_wave_callback() method which will be used update the database with the require information. As
track_wave_callback() is an instance method, we need to instantiate SQLCallback as sql_callback_obj
in order to use it.

pipeline_config.yml:

nodes:
- input.visual:

(continues on next page)

3.4. Peaking Duck 51

PeekingDuck, Release developer

(continued from previous page)

source: wave.mp4

- model.yolo

- model.posenet

- custom_nodes.dabble.wave:
callbacks:

run_end: ["sql_callback::sql_callback_obj::track_wave_callback"]

- draw.pose
- output.screen

To use the callback function, we override the callbacks config option in custom_nodes.dabble.wave. The
key run_end specifies that the callback function will be invoked after the node’s run() method. To specify the
callback function to be invoked we format the string as <script name>::<instance name>::<instance

method name>.

Run this project with peekingduck run, and when completed, a wave.db database file will be generated. We can

examine the created database using similar commands as the Interfacing with SOL tutorial:

Terminal Session

[~user/wave_project] > sqlite3
SQLite version 3.39.2 2022-07-21 15:24:47
Enter “.help” for usage hints.
Connected to a transient in-memory database.
Use “.open FILENAME” to reopen on a persistent database.
@sgqlite> .open wave.db
@sqlite> .schema wavetable
CREATE TABLE wavetable (
datetime text,
hand_direction text,
wave_count integer
);
@sgqlite> select * from wavetable where wave_count > 0 limit 5;
2022-11-08 13:30:06|left|1
2022-11-08 13:30:06]right|1
2022-11-08 13:30:06]left|2
2022-11-08 13:30:00]left|2
2022-11-08 13:30:006|left|2
@sgqlite> select * from wavetable order by datetime desc limit 5;
2022-11-08 13:30:36|right|70
2022-11-08 13:30:36|left|71
2022-11-08 13:30:35|left|69
2022-11-08 13:30:35|left|69
2022-11-08 13:30:35|left|69

Press CTRL-D to exit from sqlite3.

52

Chapter 3. Tutorials

PeekingDuck, Release developer

3.5 Calling PeekingDuck in Python

3.5.1 Using PeekingDuck’s Pipeline

As an alternative to running PeekingDuck using the command-line interface (CLI), users can also import PeekingDuck
as a Python module and run it in a Python script. This demo corresponds to the Record Video File with FPS Section
of the Duck Confit tutorial.

In addition, we will demonstrate basic debugging techniques which users can employ when troubleshooting Peeking-
Duck projects.

Setting Up

Create a PeekingDuck project using:

Terminal Session

[~user] > mkdir pkd_project
[~user] > cd pkd_project
[~user/pkd_project] > peekingduck init

Then, download the cat and computer video to the pkd_project folder and create a Python script demo_debug. py
in the same folder.

You should have the following directory structure at this point:

pkd_project/
cat_and_computer.mp4
demo_debug.py
pipeline_config.yml
src/

Creating a Custom Node for Debugging

Run the following to create a dabble node for debugging:

Terminal Session

[~user/pkd_project] > peekingduck create-node --node_subdir src/custom_nodes --node_type dabble --node_name
debug

The command will create the debug.py and debug.yml files in your project directory as shown:

pkd_project/

cat_and_computer.mp4
demo_debug.py

3.5. Calling PeekingDuck in Python 53

https://storage.googleapis.com/peekingduck/videos/cat_and_computer.mp4

PeekingDuck, Release developer

pipeline_config.yml
src/
L custom_nodes/
configs/
L— dabble/
L— debug.yml
dabble/
L— debug.py

Change the content of debug.yml to:

input: ["all"]
output: ["none"]

Line 1: The data type all allows the node to receive all outputs from the previous nodes as its input. Please see the
Glossary for a list of available data types.

Change the content of debug.py to:
Show/Hide Code

from typing import Any, Dict
import numpy as np

from peekingduck.nodes.abstract_node import AbstractNode

class Node(AbstractNode):
def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
super().__init__(config, node_path=__name__, **kwargs)
self.frame = 0

def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: # type: ignore
if "cat" in inputs["bbox_labels"]:
print(
f" {self. frame inputs['bbox_scores'] [np.where(inputs['bbox_labels'] ==
< 'cat")] "
)

self.frame += 1
return {}

Lines 14 - 17: Print out the frame number and the confidence scores of bounding boxes which are detected as “cat”.

Line 18: Increment the frame number each time run() is called.

54 Chapter 3. Tutorials

22

23

24

25

26

27

28

29

PeekingDuck, Release developer

Creating the Python Script

Copy over the following code to demo_debug.py:
Show/Hide Code

from pathlib import Path

from peekingduck.nodes.dabble import fps

from peekingduck.nodes.draw import bbox, legend

from peekingduck.nodes.input import visual

from peekingduck.nodes.model import yolo

from peekingduck.nodes.output import media_writer, screen
from peekingduck.runner import Runner

from src.custom_nodes.dabble import debug

def main(Q):
debug_node = debug.Node(pkd_base_dir=Path.cwd() / "src" / "custom_nodes")

visual_node = visual.Node(source=str(Path.cwd() / "cat_and_computer.mp4'))
yolo_node = yolo.Node(detect=["cup", "cat", "laptop", "keyboard", "mouse"])
bbox_node = bbox.Node(show_labels=True)

fps_node = fps.Node()
legend_node = legend.Node(show=["fps"])
screen_node = screen.Node()

media_writer_node = media_writer.Node(output_dir=str(Path.cwd() / "results"))

runner = Runner(
nodes=[
visual_node,
yolo_node,
debug_node,
bbox_node,
fps_node,
legend_node,
screen_node,
media_writer_node,
]
)

runner.run()

if __name__ == "__main__":
main()

Lines 9, 13: Import and initialize the debug custom node. Pass in the path/to/project_dir/src/custom_nodes
via pkd_base_dir for the configuration YAML file of the custom node to be loaded properly.

Lines 15 - 23: Create the PeekingDuck nodes necessary to replicate the demo shown in the Record Video File with
FPS tutorial. To change the node configuration, you can pass the new values to the Node () constructor as keyword
arguments.

Lines 25 - 37: Initialize the PeekingDuck Runner from runner.py with the list of nodes passed in via the nodes

3.5. Calling PeekingDuck in Python 55

https://github.com/aisingapore/PeekingDuck/blob/main/peekingduck/runner.py

21

22

23

24

25

PeekingDuck, Release developer

argument.

Note: A PeekingDuck node can be created in Python code by passing a dictionary of config keyword - config value
pairs to the Node () constructor.

Running the Python Script

Run the demo_debug. py script using:

Terminal Session

[~user/pkd_project] > python demo_debug.py

You should see the following output in your terminal:

2022-02-24 16:33:06 peekingduck.nodes.input.visual INFO: Config for node input.visual.
—»is updated to: 'source': ~user/pkd_project/cat_and_computer.mp4
2022-02-24 16:33:06 peekingduck.nodes.input.visual INFO: Video/Image size: 720 by 480
2022-02-24 16:33:06 peekingduck.nodes.input.visual INFO: Filepath used: ~user/pkd_
—project/cat_and_computer.mp4
2022-02-24 16:33:06 peekingduck.nodes.model.yolo INFO: Config for node model.yolo is.
—updated to: 'detect': [41, 15, 63, 66, 64]
2022-02-24 16:33:06 peekingduck.nodes.model.yolov4.yolo_files.detector INFO: Yolo.
—model loaded with following configs:

Model type: v4tiny,

Input resolution: 416,

IDs being detected: [41, 15, 63, 66, 64]

Max Detections per class: 50,

Max Total Detections: 50,

I0U threshold: 0.5,

Score threshold: 0.2
2022-02-24 16:33:07 peekingduck.nodes.draw.bbox INFO: Config for node draw.bbox is.
—updated to: 'show_labels': True
2022-02-24 16:33:07 peekingduck.nodes.dabble.fps INFO: Moving average of FPS will be.
—logged every: 100 frames
2022-02-24 16:33:07 peekingduck.nodes.output.media_writer INFO: Config for node output.
—media_writer is updated to: 'output_dir': ~user/pkd_project/results
2022-02-24 16:33:07 peekingduck.nodes.output.media_writer INFO: Output directory used.
—1is: ~user/pkd_project/results
[0.90861976]
[0.9082737]
[0.90818006]
[0.8888804]
[0.8877487]
[0.9071386]
[0.870267]

VT WN =R

[Truncated]

56 Chapter 3. Tutorials

PeekingDuck, Release developer

Lines 17 - 23: The debugging output showing the frame number and the confidence score of bounding boxes predicted
as “cat”.

3.5.2 Integrating with Your Workflow
The modular design of PeekingDuck allows users to pick and choose the nodes they want to use. Users are also able to
use PeekingDuck nodes with external packages when designing their pipeline.
In this demo, we will show how users can construct a custom PeekingDuck pipeline using:
 Data loaders such as tf keras.preprocessing.image_dataset_from_directory (available in tensorflow>=2.3.0),
» External packages (not implemented as PeekingDuck nodes) such as easyocr, and
* Visualization packages such as matplotlib.

The notebook corresponding to this tutorial, calling_peekingduck_in_python.ipynb, can be found in the note-
books folder of the PeekingDuck repository and is also available as a Colab notebook.

Show/Hide Instructions for Linux/Mac (Intel)/Windows

Note: The uninstallation step is necessary to ensure that the proper version of OpenCV is installed.

You may receive an error message about the incompatibility between awscli and colorama==0.4.4. awscli is
conservative about pinning versions to maintain backward compatibility. The code presented in this tutorial has been
tested to work and we have chosen to prioritize PeekingDuck’s dependency requirements.

Show/Hide Instructions for Mac (Apple Silicon)

Note: We install the problematic packages easyocr and oidv6 first and then uninstall the pip-related OpenCV
packages which were installed as dependencies. Mac (Apple silicon) needs conda’s OpenCV.

There will be a warning that easyocr needs some version of Pillow which can be ignored.

We are using Open Images Dataset V6 as the dataset for this demo. We recommend using the third-party oidv6 PyPI
package to download the images necessary for this demo.

Run the following command after installing the prerequisites:

Terminal Session

[~user] > mkdir pkd_project
[~user] > cd pkd_project
[~user/pkd_project] > oidv6 downloader en --dataset data/oidv6 --type_data train --classes car --limit 10 --yes

Copy calling_peekingduck_in_python.ipynb to the pkd_project folder and you should have the following
directory structure at this point:

pkd_project/

|: calling_peekingduck_in_python.ipynb
data/
L— oidve/

3.5. Calling PeekingDuck in Python 57

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory
https://pypi.org/project/easyocr/
https://pypi.org/project/matplotlib/
https://github.com/aisingapore/PeekingDuck/tree/main/notebooks
https://github.com/aisingapore/PeekingDuck/tree/main/notebooks
https://colab.research.google.com/drive/1NwQKrnY_3ia2mBEaUinkvUqbrjjT3ssq#scrollTo=l2MCyh5Hgp5O
https://storage.googleapis.com/openimages/web/index.html
https://pypi.org/project/oidv6/
https://pypi.org/project/oidv6/

PeekingDuck, Release developer

boxes/
metadata/
train/

L— car/

Import the Modules

Show/Hide Code

import os
from pathlib import Path

import cv2

import easyocr

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

from peekingduck.nodes.draw import bbox

from peekingduck.nodes.model import yolo_license_plate

%matplotlib inline

Lines 9 - 10: You can also do:

from peekingduck.nodes.draw import bbox as pkd_bbox
from peekingduck.nodes.model import yolo_license_plate as pkd_yolo_license_plate

bbox_node = pkd_bbox.Node()
yolo_license_plate_node = pkd_yolo_license_plate.Node()

to avoid potential name conflicts.

Initialize PeekingDuck Nodes

Show/Hide Code

yolo_lp_node = yolo_license_plate.Node()

bbox_node = bbox.Node(show_labels=True)

Lines 3: To change the node configuration, you can pass the new values to the Node () constructor as keyword argu-
ments.

Refer to the API Documentation for the configurable settings for each node.

58 Chapter 3. Tutorials

PeekingDuck, Release developer

Create a Dataset Loader

Show/Hide Code

data_dir = Path.cwd().resolve() / "data" / "oidv6" / "train"
dataset = tf.keras.preprocessing.image_dataset_from_directory(
data_dir, batch_size=1, shuffle=False

)

Lines 2 - 4: We create the data loader using tf.keras.preprocessing.image_dataset_from_directory(); you
can also create your own data loader class.

Create a License Plate Parser Class

Show/Hide Code

class LPReader:
def __init__(self, use_gpu):
self.reader = easyocr.Reader(["en"], gpu=use_gpu)

def read(self, image):
"""Reads text from the image and joins multiple strings to a
single string.

e

return " ".join(self.reader.readtext(image, detail=0))

reader = LPReader(False)

We create the license plate parser class in a Python class using easyocr to demonstrate how users can integrate the
PeekingDuck pipeline with external packages.

Alternatively, users can create a custom node for parsing license plates and run the pipeline through the CLI instead.
Refer to the custom nodes tutorial for more information.

The Inference Loop

Show/Hide Code

def get_best_license_plate(frame, bboxes, bbox_scores, width, height):
"""Returns the image region enclosed by the bounding box with the highest
confidence score.
best_idx = np.argmax(bbox_scores)
best_bbox = bboxes[best_idx].astype(np.float32).reshape((-1, 2))
best_bbox[:, 0] *= width
best_bbox[:, 1] *= height
best_bbox = np.round(best_bbox) .astype(int)

return frame[slice(*best_bbox[:, 1]), slice(*best_bbox[:, 0])]
num_col = 3

For visualization, we plot 3 columns, 1) the original image, 2) image with
bounding box, and 3) the detected license plate region with license plate

(continues on next page)

3.5. Calling PeekingDuck in Python 59

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

PeekingDuck, Release developer

(continued from previous page)

number prediction shown as the plot title
fig, ax = plt.subplots(
len(dataset), num_col, figsize=(num_col * 3, len(dataset) * 3)
)
for i, (element, path) in enumerate(zip(dataset, dataset.file_paths)):
image_orig = cv2.imread(path)
image_orig = cv2.cvtColor(image_orig, cv2.COLOR_BGR2RGB)
height, width = image_orig.shape[:2]

image = element[0].numpy().astype("uint8") [0].copy()

yolo_lp_input = {"img": image}
yolo_lp_output = yolo_lp_node.run(yolo_lp_input)

bbox_input = {
"img": image,
"bboxes": yolo_lp_output["bboxes"],
"bbox_labels": yolo_lp_output["bbox_labels"],
}

_ = bbox_node.run(bbox_input)

ax[i][0].imshow(image_orig)
ax[i][1].imshow(image)
If there are any license plates detected, try to predict the license
plate number
if len(yolo_lp_output["bboxes"]) > 0:
1p_image = get_best_license_plate(
image_orig, yolo_lp_output["bboxes"],
yolo_lp_output["bbox_scores"],
width,
height,
)
1p_pred = reader.read(lp_image)
ax[i][2].imshow(1lp_image)
ax[i][2].title.set_text(f"Pred: {lp_pred}!")

Lines 1 - 11: We define a utility function for retrieving the image region of the license plate with the highest confidence
score to improve code clarity. For more information on how to convert between bounding box and image coordinates,
please refer to the Bounding Box vs Image Coordinates tutorial.

Lines 27 - 35: By carefully constructing the input for each of the nodes, we can perform the inference loop within a
custom workflow.

Lines 37 - 38: We plot the data using matplotlib for debugging and visualization purposes.

Lines 41 - 48: We integrate the inference loop with external packages such as the license plate parser we have created
earlier using easyocr.

60 Chapter 3. Tutorials

PeekingDuck, Release developer

3.6 Using Your Own Models

PeekingDuck offers pre-trained model nodes that can be used to tackle a wide variety of problems, but you may need
to train your own model on a custom dataset sometimes. This tutorial will show you how to package your model into
a custom model node, and use it with PeekingDuck. We will be tackling a manufacturing use case here - classifying
images of steel castings into “defective” or “normal” classes.

Casting is a manufacturing process in which a material such as metal in liquid form is poured into a mold and allowed to
solidify. The solidified result is also called a casting. Sometimes, defective castings are produced, and quality assurance
departments are responsible for preventing defective pieces from being used downstream. As inspections are usually
done manually, this adds a significant amount of time and cost, and thus there is an incentive to automate this process.

The images of castings used in this tutorial are the front faces of steel pump impellers. From the comparison below, it
can be seen that the defective casting has a rough, uneven edges while the normal casting has smooth edges.

normal defective

Fig. 11: Normal Casting Compared to Defective Casting

3.6.1 Model Training

PeekingDuck is designed for model inference rather than model training. This optional section shows how a simple
Convolutional Neural Network (CNN) model can be trained separately from the PeekingDuck framework. If you have
already trained your own model, the following section describes how you can convert it to a custom model node, and
use it within PeekingDuck for inference.

Setting Up

Install the following prerequisite for visualization.

> conda install matplotlib

Create the following project folder:

Terminal Session

[~user] > mkdir castings_project

3.6. Using Your Own Models 61

https://en.wikipedia.org/wiki/Impeller

PeekingDuck, Release developer

[~user] > cd castings_project

Download the castings dataset and unzip the file to the castings_project folder.

Note: The castings dataset used in this example is modified from the original dataset from Kaggle.

You should have the following directory structure at this point:

castings_project/
L castings_data/

inspection/

train/

validation/
Update Training Script

Create an empty train_classifier.py file within the castings_project folder, and update it with the following
code:

train_classifier.py:

Show/Hide Code for train_classifier.py

mirn

» | Script to train a classification model on images, save the model, and plot the.
—training results

4« |Adapted from: https://www.tensorflow.org/tutorials/images/classification

mirn

7 | import pathlib
¢ |from typing import List, Tuple

0 |import matplotlib.pyplot as plt

i |import tensorflow as tf

» | from tensorflow.keras import layers

i3 | from tensorflow.keras.models import Sequential

1« | from tensorflow.keras.layers.experimental.preprocessing import Rescaling

6 |# setup global constants

7 |DATA_DIR = "./castings_data"

s |WEIGHTS_DIR = "./weights"

v |RESULTS = "training_results.png"
» |EPOCHS = 10

a1 |BATCH_SIZE = 32

» | IMG_HEIGHT = 180

» | IMG_WIDTH = 180

24

25

% |def prepare_data() -> Tuple[tf.data.Dataset, tf.data.Dataset, List[str]]:

e
27

(continues on next page)

62 Chapter 3. Tutorials

https://storage.googleapis.com/peekingduck/data/castings_data.zip
https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product?resource=download&select=casting_data

PeekingDuck, Release developer

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

(continued from previous page)

Generate training and validation datasets from a folder of images.

Returns:
train_ds (tf.data.Dataset): Training dataset.
val_ds (tf.data.Dataset): Validation dataset.
class_names (List[str]): Names of all classes to be classified.

o

train_dir = pathlib.Path(DATA_DIR, "train'")
validation_dir = pathlib.Path(DATA_DIR, "validation'")

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
train_dir,
image_size=(IMG_HEIGHT, IMG_WIDTH),
batch_size=BATCH_SIZE,

)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
validation_dir,
image_size=(IMG_HEIGHT, IMG_WIDTH),
batch_size=BATCH_SIZE,

)

class_names = train_ds.class_names

return train_ds, val_ds, class_names

def train_and_save_model(
train_ds: tf.data.Dataset, val_ds: tf.data.Dataset, class_names: List[str]
) -> tf.keras.callbacks.History:

o

Train and save a classification model on the provided data.

Args:
train_ds (tf.data.Dataset): Training dataset.
val_ds (tf.data.Dataset): Validation dataset.
class_names (List[str]): Names of all classes to be classified.

Returns:
history (tf.keras.callbacks.History): A History object containing.
—recorded events from
model training.

o

num_classes = len(class_names)

model = Sequential(
[
Rescaling(1.0 / 255, input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
layers.Conv2D(16, 3, padding="same", activation="relu"),
layers.MaxPooling2D(),

(continues on next page)

3.6.

Using Your Own Models

63

PeekingDuck, Release developer

(continued from previous page)

79 layers.Conv2D(32, 3, padding="same", activation="relu"),
80 layers.MaxPooling2D(),

81 layers.Conv2D(64, 3, padding="same", activation="relu"),
82 layers.MaxPooling2D(),

83 layers.Dropout(0.2),

84 layers.Flatten(),

85 layers.Dense(128, activation="relu"),

86 layers.Dense(num_classes),

87]

88)

89

90 model . compile(

o1 optimizer="adam",

9 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
03 metrics=["accuracy"],

94)

95

96 print (model. summary())

97 history = model.fit(train_ds, validation_data=val_ds, epochs=EPOCHS)
08 model . save (WEIGHTS_DIR)

99

100 return history

101
102
03 | def plot_training_results(history: tf.keras.callbacks.History) -> None:

e
104

105 Plot training and validation accuracy and loss curves, and save the plot.

106

107 Args:

108 history (tf.keras.callbacks.History): A History object containing.
—recorded events from

109 model training.

o
110

1 acc = history.history["accuracy"]

12 val_acc = history.history["val_accuracy"]

13 loss = history.history["loss"]

114 val_loss = history.history["val_loss"]

115 epochs_range = range(EPOCHS)

116

17 plt.figure(figsize=(16, 8))

18 plt.subplot(l, 2, 1)

119 plt.plot(epochs_range, acc, label="Training Accuracy')

120 plt.plot(epochs_range, val_acc, label="Validation Accuracy")
121 plt.legend(loc="lower right")

122 plt.title("Training and Validation Accuracy')

123

124 plt.subplot(l, 2, 2)

125 plt.plot(epochs_range, loss, label="Training Loss'")

126 plt.plot(epochs_range, val_loss, label="Validation Loss")
127 plt.legend(loc="upper right")

128 plt.title("Training and Validation Loss'")

129 plt.savefig(RESULTS)

(continues on next page)

64 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

131

i |if __name__ == "__main__":

133 train_ds, val_ds, class_names = prepare_data()

134 history = train_and_save_model (train_ds, val_ds, class_names)
135 plot_training_results(history)

Training the Model

Train the model by running the following command.

Terminal Session

[~user/castings_project] > python train_classifier.py

Note: For macOS Apple Silicon, the above code only works on macOS 12.x Monterey with the latest tensorflow-macos
and tensorflow-metal versions. It will crash on macOS 11.x Big Sur due to bugs in the outdated tensorflow versions.

The model will be trained for 10 epochs, and when training is completed, a new weights folder and
training_results.png will be created:

castings_project/

— train_classifier.py
— training_results.png
— castings_data/

—— inspection/
— train/

L— validation/
L— weights/

— keras_metadata.pb
— saved_model.pb
—— assets/

L— variables/

The plots from training_results.png shown below indicate that the model has performed well on the validation
dataset, and we are ready to create a custom model node from it.

3.6. Using Your Own Models 65

PeekingDuck, Release developer

Training and Validation Accuracy Training and Validation Loss
0.6

—— Training Loss

1.00 + I
Validation Loss

0.95 A 051

0.90 0.4

0.85 4 0.3

0.80 4
0.24

0.75 4
0.14

0.70

—— Training Accuracy
Validation Accuracy 0.0

0 2 4 6 8 0 2 4 6 8

Fig. 12: Model Training Results

3.6.2 Using Your Trained Model with PeekingDuck
This section will show you how to convert your trained model into a custom PeekingDuck node, and give an example

of how you can integrate this node in a PeekingDuck pipeline. It assumes that you are already familiar with the process
of creating custom nodes, covered in the earlier custom node tutorial.

Converting to a Custom Model Node

First, let’s create a new PeekingDuck project within the existing castings_project folder.

Terminal Session

[~user/castings_project] > peekingduck init

Next, we’ll use the peekingduck create-node command to create a custom node:

Terminal Session

[~user/castings_project] > peekingduck create-node

Creating new custom node. . .

Enter node directory relative to ~user/castings_project [src/custom_nodes]:
Select node type (input, augment, model, draw, dabble, output): model
Enter node name [my_custom_node]: casting_classifier

66 Chapter 3. Tutorials

PeekingDuck, Release developer

Node directory: ~user/castings_project/src/custom_nodes
Node type: model
Node name: casting_classifier

Creating the following files:
Config file: ~user/castings_project/src/custom_nodes/configs/model/casting_classifier.yml
Script file: ~user/castings_project/src/custom_nodes/model/casting_classifier.py

Proceed? [Y/n]:

Created node!

The castings_project folder structure should now look like this:

castings_project/
— pipeline_config.yml
— train_classifier.py
— training_results.png
— castings_data/

inspection/
train/
validation/

— src/
L— custom_nodes/
configs/
L— model/
L casting_classifier.yml
model/
L casting_classifier.py
L— weights/

keras_metadata.pb
saved_model.pb
assets/
variables/

castings_project now contains two files that we need to modify to implement our custom node.
1. src/custom_nodes/configs/model/casting_classifier.yml:

casting_classifier.yml updated content:

. |input: ["img"]
» |output: ["pred_label", "pred_score"]

+ |weights_parent_dir: weights
s |class_label_map: {0: "defective", 1: "normal"}

2. src/custom_nodes/model/casting_classifier.py:
casting_classifier.py updated content:

Show/Hide Code for casting_classifier.py

3.6. Using Your Own Models 67

PeekingDuck, Release developer

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

mirn

Casting classification model.

mirn

from typing import Any, Dict

import cv2
import numpy as np
import tensorflow as tf

from peekingduck.nodes.node import AbstractNode

IMG_HEIGHT = 180
IMG_WIDTH = 180

class Node(AbstractNode):
"""Tnitializes and uses a CNN to predict if an image frame shows a normal
or defective casting.

o

def __init__(self, config: Dict[str, Any] = None, **kwargs: Any) -> None:
super().__init__(config, node_path=__name__, **kwargs)
self.model = tf.keras.models.load_model(self.weights_parent_dir)

def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Reads the image input and returns the predicted class label and
confidence score.

Args:
inputs (dict): Dictionary with key "img".
Returns:
outputs (dict): Dictionary with keys "pred_label" and "pred_score".
img = cv2.cvtColor(inputs["img"], cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (IMG_WIDTH, IMG_HEIGHT))
img = np.expand_dims(img, axis=0)

predictions = self.model.predict(img)
score = tf.nn.softmax(predictions[0])

return {
"pred_label": self.class_label_map[np.argmax(score)],
"pred_score": 100.0 * np.max(score),

The custom node takes in the built-in PeekingDuck img data type, makes a prediction based on the image, and produces
two custom data types: pred_label, the predicted label (“defective” or “normal”); and pred_score, which is the
confidence score of the prediction.

68

Chapter 3. Tutorials

PeekingDuck, Release developer

Using the Classifier in a PeekingDuck Pipeline

We’ll now pair this custom node with other PeekingDuck nodes to build a complete solution. Imagine an automated
inspection system like the one shown below, where the castings are placed on a conveyor belt and a camera takes a
picture of each casting and sends it to the PeekingDuck pipeline for prediction. A report showing the predicted result
for each casting is produced, and the quality inspector can use it for further analysis.

Camera bridge)
— Processing tool

Objects '
feei!ing ' Conveying
direction
N A ;

/ | =
() (Further
Conveyor belt . processing
Rotary encoder signal

Fig. 13: Vision Based Inspection of Conveyed Objects (Source: ScienceDirect)

Edit the pipeline_config.yml file to use the input.visual node to read in the images, and the output.
csv_writer node to produce the report. We will test our solution on the 10 casting images in castings_data/
inspection, where each image’s filename is a unique casting ID such as 28_4137. jpeg.

pipeline_config.yml:

pipeline_config.yml updated content:

1 |nodes:

2 |- input.visual:

3 source: castings_data/inspection

+ |- custom_nodes.model.casting_classifier

s |- output.csv_writer:

6 stats_to_track: ["filename", "pred_label", "pred_score"]
7 file_path: casting_predictions.csv

8 logging_interval: 0

Line 2 input.visual: tells PeekingDuck to load the images from castings_data/inspection.
Line 4 Calls the custom model node that you have just created.

Line 5 output.csv_writer: produces the report for the quality inspector in a CSV file
castings_predictions_DDMMYY-hh-mm-ss.csv (time stamp appended to file_path). This node
receives the filename data type from input.visual, the custom data types pred_label and
pred_score from the custom model node, and writes them to the columns of the CSV file.

Run the above with the command peekingduck run.

Open the created CSV file and you would see the following results. Half of the castings have been predicted as defective
with high confidence scores. As the file name of each image is its unique casting ID, the quality inspector would be

3.6. Using Your Own Models 69

https://www.sciencedirect.com/science/article/pii/S221282711200248X

PeekingDuck, Release developer

able to check the results with the actual castings if needed.

Time filename pred_label pred_score
11:50:31 28 3123.jpeg defective 100
11:50:31 28 3416.jpeg defective 100
11:50:31 28 4137.jpeg defective 99.9213099
11:50:31 28 5297.jpeg defective 100
11:50:31 28 7653.jpeg defective 100
11:50:31 28_9918.jpeg normal 99.6197104
11:50:31 28 9920.jpeg normal 99.99367
11:50:31 28_9925.jpeg normal 99.9608338
11:50:31 28 9926.jpeg normal 97.5584447
11:50:31 28 9928.jpeg normal 97.8244841

Fig. 14: Casting Prediction Results

To visualize the predictions alongside the casting images, create an empty Python script named visualize_results.
py, and update it with the following code:

visualize_results.py:

Show/Hide Code for visualize_results.py

mirn

Script to visualize the prediction results alongside the casting images

mirn

1

2

3

s

s | import csv
6

7 | import cv2

s |import matplotlib.pyplot as plt

9

v |CSV_FILE = "casting_predictions_280422-11-50-30.csv" # change file name.
—accordingly

| INSPECTION_IMGS_DIR = "castings_data/inspection/"

2 |RESULTS_FILE = "inspection_results.png"

1« | fig, axs = plt.subplots(2, 5, figsize=(50, 20))

6 |with open(CSV_FILE) as csv_file:

17 csv_reader = csv.reader(csv_file, delimiter=",")

18 next(csv_reader, None)

19 for i, row in enumerate(csv_reader):

20 # csv columns follow this order: 'Time', 'filename', 'pred_label', 'pred_score'
21 image_path = INSPECTION_IMGS_DIR + row[1]

» image_orig = cv2.imread(image_path)

P5] image_orig = cv2.cvtColor(image_orig, cv2.COLOR_BGR2RGB)

24

25 row_idx = 0 if i < 5 else 1

(continues on next page)

70 Chapter 3. Tutorials

PeekingDuck, Release developer

(continued from previous page)

2 axs[row_idx][i % 5].imshow(image_orig)
2 axs[row_idx]J[i % 5].set_title(row[1l] + " - " + row[2], fontsize=35)
28 axs[row_idx][i % 5].axis("off")

29

w | fig.savefig(RESULTS_FILE)

In Line 10, replace the name of CSV_FILE with the name of the CSV file produced on your system, as a timestamp
would have been appended to the file name.

Run the following command to visualize the results.

Terminal Session

[~user/castings_project] > python visualize_results.py

An inspection_results.png would be created, as shown below. The top row of castings are clearly defective, as
they have rough, uneven edges, while the bottom row of castings look normal. Therefore, the prediction results are
accurate for this batch of inspected castings. The quality inspector can provide feedback to the manufacturing team to
further investigate the defective castings based on the casting IDs.

28 3416.jpeg - defective 28 5297.jpeg - defective

28_4137.jpeg - defective

28_ 765.Jpeg - defective

28 3123.jpeg - defective

Fig. 15: Casting Prediction Visualization

This concludes the guided example on using your own custom models.

3.6. Using Your Own Models 71

PeekingDuck, Release developer

3.6.3 Custom Object Detection Models

The previous example was centered on the task of image classification. Object detection is another common task in
Computer Vision. PeekingDuck offers several pre-trained object detection model nodes which can detect up to 80
different types of objects, such as persons, cars, and dogs, just to name a few. For the complete list of detectable
objects, refer to the Object Detection IDs page. Quite often, you may need to train a custom object detection model
on your own dataset, such as defects on a printed circuit board (PCB) as shown below. This section discusses some
important considerations for the object detection task, supplementing the guided example above.

Fig. 16: Object Detection of Defects on PCB (Source: The Institution of Engineering and Technology)

PeekingDuck’s object detection model nodes conventionally receive the img data type, and produce the bboxes,
bbox_labels, and bbox_scores data types. An example of this can be seen in the API documentation for a node such
as model.efficientdet. We strongly recommend keeping to these data type conventions for your custom object
detection node, ensuring that they adhere to the described format, e.g. img is in BGR format, and bboxes is a NumPy
array of a certain shape.

This allows you to leverage on PeekingDuck’s ecosystem of existing nodes. For example, by ensuring that your custom
model node receives img in the correct format, you are able to use PeekingDuck’s input.visual node, which can
read from multiple visual sources such as a folder of images or videos, an online cloud source, or a CCTV/webcam live
feed. By ensuring that your custom model node produces bboxes and bbox_labels in the correct format, you are able
to use PeekingDuck’s draw.bbox node to draw bounding boxes and associated labels around the detected objects.

By doing so, you would have saved a significant amount of development time, and can focus more on developing and
finetuning your custom object detection model. This was just a simple example, and you can find out more about
PeekingDuck’s nodes from our AP/ Documentation, and PeekingDuck’s built-in data types from our Glossary.

72 Chapter 3. Tutorials

https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/trit.2019.0019

PeekingDuck, Release developer

3.7 Using Model Hub Nodes

PeekingDuck has support for models from external model hubs. You can leverage the model hub nodes to use these
external models with the PeekingDuck pipeline. The model hub nodes differ in design from traditional model nodes
as the external models perform a variety of computer vision tasks. This tutorial demonstrates how to use these nodes
through some sample pipelines.

3.7.1 List of Model Hub Nodes

The table below shows the model hub nodes available.

Documentation Model Hubs
model .huggingface_hub | Hugging Face Hub
model .mediapipe_hub MediaPipe Solutions

3.7.2 Hugging Face Hub

The model.huggingface_hub node supports transformer models which perform the following computer vision tasks:
1. Object detection
2. Instance segmentation

You can use the following command to get a list of supported computer vision tasks:

Terminal Session

[~user/project_dir] > peekingduck model-hub huggingface tasks
Supported computer vision tasks: [‘instance segmentation’, ‘object detection’]

Object Detection

This example shows how Hugging Face Hub’s object detection models can be used to blur computer related objects
from cat_and_computer.mp4.

Supported Models

Use the following command to get a list of supported object detection models:

Terminal Session

[~user/project_dir] > peekingduck model-hub huggingface models --task 'object detection'
Supported Hugging Face “object_detection™ models:

facebook/detr-resnet-50

facebook/detr-resnet-50-dc5

3.7. Using Model Hub Nodes 73

https://huggingface.co/docs/hub/index
https://google.github.io/mediapipe/
https://storage.googleapis.com/peekingduck/videos/cat_and_computer.mp4

PeekingDuck, Release developer

hustvl/yolos-base
hustvl/yolos-small

<long list truncated>

Class Labels

The models are trained on a variety of datasets which may not share the same set of class labels, e.g., the PubTables-1M
dataset contains the label “table column” which is not found in the COCO dataset. As such, it may be necessary to look
through the class labels supported by the model. You can do so with the following command:

Terminal Session

[~user/project_dir] > peekingduck model-hub huggingface detect-ids --model_type 'hustvl/yolos-small'

The detect ID-to-label mapping for “facebook/hustvl/yolos-small” can be found at
https://huggingface.co/hustvl/yolos-small/blob/main/config.json under the “id2label key.

Pipeline

The following pipeline_config.yml can be used to blur computer related objects:

1 |nodes:

» |- input.visual:

3 source: /path/to/cat_and_computer.mp4

+ |- model.huggingface_hub:

5 task: object_detection

6 model_type: hustvl/yolos-small

7 detect: ["laptop", "keyboard", "mouse"]
s |- draw.blur_bbox

o |- output.screen

Here is a step-by-step explanation of what has been done:

Line 2 input.visual tells PeekingDuck to load cat_and_computer.mp4.

Line 4 model.huggingface_hub is set to perform the object_detection
task and load the hustvl/yolos-small model. We also
set the model to detect only laptops, keyboards, and mice.

Line 8 draw.blur_bbox is used to apply a blur effect on the bounding
boxes detected by the model.

Run the above with the command peekingduck run.

You should see a display of the cat_and_computer.mp4 with the computer related objects blurred. The 30-second
video will auto-close at the end, or you can press q to end early.

74 Chapter 3. Tutorials

https://msropendata.com/datasets/505fcbe3-1383-42b1-913a-f651b8b712d3
https://cocodataset.org/#home
https://huggingface.co/hustvl/yolos-small/blob/main/config.json

PeekingDuck, Release developer

Fig. 17: Cat and Computer Screenshot with Computer Related Objects Blurred

Instance Segmentation

This example also demonstrates how to blur computer related objects but with Hugging Face Hub’s instance segmen-
tation models instead.

Supported Models

To get a list of supported instance segmentation models, use the following CLI command:

Terminal Session

[~user/project_dir] > peekingduck model-hub huggingface models --task 'instance segmentation'
Supported hugging face “instance_segmentation” models:

facebook/detr-resnet-101-panoptic

facebook/detr-resnet-50-dc5-panoptic

facebook/detr-resnet-50-panoptic

facebook/maskformer-swin-tiny-coco

<long list truncated>

3.7. Using Model Hub Nodes 75

PeekingDuck, Release developer

Class Labels

Similar to the object detection models, the instance segmentation models are also trained on a variety of datasets, the
same detect-ids command can be used to retrieve the file containing the model’s class labels:

Terminal Session

[~user/project_dir] > peekingduck model-hub huggingface detect-ids --model_type
'facebook/maskformer-swin-tiny-coco'

The detect ID-to-label mapping for “facebook/maskformer-swin-tiny-coco™ can be found at
https://huggingface.co/facebook/maskformer-swin-tiny-coco/blob/main/config.json under the “id2label®
key.

Pipeline

The task of blurring computer related objects can be achieved with the following pipeline_config.yml:

1 |nodes:

2 |- input.visual:

3 source: /path/to/cat_and_computer.mp4

+ |- model.huggingface_hub:

5 task: instance_segmentation

6 model_type: facebook/maskformer-swin-tiny-coco
7 detect: ["laptop", "keyboard", "mouse"]
s |- draw.instance_mask:

9 effect:

10 blur: 50

n |- output.screen

Here is a step-by-step explanation of what has been done:

Line 2 input.visual tells PeekingDuck to load cat_and_computer.mp4.

Line 4 model.huggingface_hub is set to perform the instance_segmentation
task and load the facebook/maskformer-swin-tiny-coco model. We also
set the model to detect only laptops, keyboards, and mice.

Line 8 draw. instance_mask is used to visualize the output of the
Hugging Face Hub model. A blur effect is applied on the instance mask
outputs.

Run the above with the command peekingduck run.

You should see a display of the cat_and_computer.mp4 with the computer related objects blurred. The 30-second
video will auto-close at the end, or you can press q to end early.

76 Chapter 3. Tutorials

https://huggingface.co/facebook/maskformer-swin-tiny-coco/blob/main/config.json

PeekingDuck, Release developer

Fig. 18: Cat and Computer Screenshot with Computer Related Objects Blurred

3.7.3 MediaPipe Solutions

The model .mediapipe_hub node supports MediaPipe solutions which perform the following computer vision tasks:
1. Object detection

2. Pose estimation
Note: The object detection model only detects faces as the generic object detection model is not available in Python at
the time of writing.

You can use the following command to get a list of supported computer vision tasks and their respective subtasks:

Terminal Session

[~user/project_dir] > peekingduck model-hub mediapipe tasks
Supported computer vision tasks and respective subtasks:
pose estimation

body
object detection

face

3.7. Using Model Hub Nodes 77

PeekingDuck, Release developer

Object Detection (Face)

This example demonstrates the usage of MediaPipe object detection (face) solution.

Supported Model Types

To get a list of supported model types for the pose estimation (body) task, use the following command:

Terminal Session

[~user/project_dir] > peekingduck model-hub mediapipe model-types --task 'object detection' --subtask
'face’

Supported model types for ‘object detection/face’
0: A short-range model that works best for faces within 2 meters from the camera.
1: A full-range model best for faces within 5 meters.

Pipeline
i nodes:
2 - input.visual:
3 source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
4 - model .mediapipe_hub:
5 task: object_detection
6 subtask: face
7 model_type: 0
8 - draw.bbox
9 - output.screen

Here is a step-by-step explanation of what has been done:

Line 2 input.visual tells PeekingDuck to load wave .mp4.

Line 4 model.mediapipe_hub is set to perform the object_detection
task and face subtask. Model type 0 is selected.

Line 8 draw.bbox is used to visualize the output of the
MediaPipe model.

Run the above with the command peekingduck run.

You should see a display of the wave.mp4 with a bounding box drawn around the person’s face. The video will auto-
close at the end, or you can press q to end early.

78 Chapter 3. Tutorials

PeekingDuck, Release developer

Fig. 19: Object Detection Screenshot

Pose Estimation (Body)

This example demonstrates the usage of MediaPipe pose estimation (body) solution.

Supported Model Types

To get a list of supported model types for the pose estimation (body) task, use the following command:

Terminal Session

[~user/project_dir] > peekingduck model-hub mediapipe model-types --task ‘pose estimation' --subtask
‘body’

Supported model types for ‘pose estimation/body’

0: BlazePose GHUM Lite, lower inference latency at the cost of landmark accuracy.

1: BlazePose GHUM Full.

2: BlazePose GHUM Heavy, higher landmark accuracy at the cost of inference latency.

3.7. Using Model Hub Nodes 79

PeekingDuck, Release developer

Pipeline
1 | nodes:
2 - input.visual:
3 source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
4 - model.mediapipe_hub:
5 task: pose_estimation
6 subtask: body
7 model_type: 1
8 - draw.pose
9 - output.screen

Here is a step-by-step explanation of what has been done:

Line 2 input.visual tells PeekingDuck to load wave.mp4.

Line 4 model .mediapipe_hub is set to perform the pose_estimation
task and body subtask. Model type 1 is selected.

Line 8 draw.pose is used to visualize the output of the
MediaPipe model.

Run the above with the command peekingduck run.

Fig. 20: Pose Estimation Screenshot

You should see a display of the wave.mp4 with the skeletal poses drawn on the person. The video will auto-close at
the end, or you can press q to end early.

80 Chapter 3. Tutorials

CHAPTER
FOUR

PEEKINGDUCK ECOSYSTEM

This section covers the extensions to the PeekingDuck ecosystem.

4.1 PeekingDuck Viewer

The PeekingDuck Viewer offers you an interactive GUI application to manage and run PeekingDuck pipelines, and to
view and analyze the output video.

4.1.1 Running the Viewer

The PeekingDuck Viewer can be activated using the CLI --viewer option:

Terminal Session

[~user] > peekingduck run --viewer

A screenshot of the Viewer and its GUI components is shown below:

Once the Viewer screen appears, PeekingDuck will begin executing the current pipeline. The pipeline output is dis-
played as a video in the center of the screen, with a progress bar below it.

If pipeline input length is deterministic (e.g. using a video file as the source), the progress bar functions like a normal
progress bar moving from start to end. Upon completion, the progress bar will be replaced with a slider that you can
use to navigate the output video.

If the length is non-deterministic (e.g. capturing a webcam video), then the progress bar will function in a non-
deterministic manner: animating itself to indicate progress but without an end point (as PeekingDuck has no idea
how long the webcam video will be). In this case, click the Play/Stop button to end the webcam video capture, and
the progress bar will become a slider.

81

PeekingDuck, Release developer

PeekingDuck Viewer

1] N
Running pipeline_config.yml
He g pIp _ g.y!
242 <———— Frame number
Stop - 100% +
Plafst 4———————— Hide/Show playlist
Pipeline: /L i _viewer/Peeki ipeline_config.yml
Play/ Progress bar/ Zoom Current Zoom
Stop Slider out zoom in

Fig. 1: The PeekingDuck Viewer screen, with explanations for the main controls.

82

Chapter 4. PeekingDuck Ecosystem

PeekingDuck, Release developer

4.1.2 Navigating the Output Video

You can examine the output video of the executed pipeline by using the Play/Stop button to replay the entire video.

You may also scrub through the video using the slider to go directly to the frames of interest. The current video frame
number is shown to the right of the slider, serving as a position indicator. To “jump” to a particular position on the
slider, click the right mouse button on that position. To move frame-by-frame forward/backward, click the /eft mouse
button anywhere to the right/left of the current slider position.

The + (zoom in) and - (zoom out) buttons allow you to adjust the video size. You may also use keyboard shortcuts to
adjust the zoom: CTRL - - zoom out, CTRL - + zoom in, CTRL - = reset zoom

4.1.3 Using the Pipeline Playlist

Clicking the Playlist button will show/hide the playlist.

LICN PeekingDuck Viewer

Running pipeline_config.yml

E

Pipelines: A ——— Click to change

sort order
cat_computer.ym|
missing_pipeline.yml wg_
pipeline_configyml TN
[wave.yml <——— List of pipelines
Missing file
Pipeline Information: Selected
Name: pipeline_config.yml| - pipeline info
Modified: 2022-06-17-13:50:11
Path: [Users/dotw/src/aisg/ongtw/
tmp_viewer/PeekingDuck/
pipeline_config.yml
Run selected
Add Delets Run ¢——— .
pipeline
378
Stop - 100% +

laylist

Pipeline: / i _viewer/Peeki ipeline_config.yml

Add pipeline Delete pipeline
to playlist from playlist

Fig. 2: PeekingDuck Viewer with playlist shown.

The above screenshot shows the playlist on the right. The playlist is a collection of pipeline files that can be run with
PeekingDuck. The current pipeline is automatically added to the playlist. This playlist is specific to you and is saved
across different PeekingDuck Viewer runs.

Click to select a pipeline in the playlist. The pipeline’s information will be displayed in the Pipeline Information
panel below. It shows the pipeline’s name, last modified date/time, and full file path.

4.1. PeekingDuck Viewer 83

PeekingDuck, Release developer

To run the currently selected pipeline, click the Run button.

The Add button lets you manually add a pipeline file to the playlist. It will display a File Explorer dialog. Use it to
select a PeekingDuck pipeline YAML file and it will be added to your playlist.

The Delete button will remove the currently selected pipeline from the playlist, after you have confirmed the deletion.

If the pipeline in the playlist is red, it means the pipeline YAML file is missing. This could mean the pipeline had been
added earlier, but its YAML file had since been deleted or moved to another folder. Delete the missing pipeline entry
to remove it from the playlist.

The list of pipelines can be sorted in reverse order by clicking the playlist header.

Note: The playlist is saved in ~/.peekingduck/playlist.yml, where ~ is the user’s home folder.

4.1.4 Exiting the Viewer

To exit the Viewer, close the Viewer window.

84 Chapter 4. PeekingDuck Ecosystem

CHAPTER
FIVE

5.1 Object Detection Models

MODEL RESOURCES & INFORMATION

5.1.1 List of Object Detection Models

The table below shows the object detection models available for each task category.

Category Model Documentation

General EfficientDet model.efficientdet
YOLOv4 model.yolo
YOLOX model .yolox

Face MTCNN model .mtcnn
YOLOV4 (Face) model .yolo_face

License plate | YOLOv4 (License Plate) | model.yolo_license_plate

5.1.2 Benchmarks

Inference Speed

The table below shows the frames per second (FPS) of each model type.

Model Type Size | CPU GPU
single | multiple | single | multiple
YOLO v4tiny 416 2242 | 21.71 65.24 | 57.50
v4 416 2.62 2.59 30.40 | 28.71
EfficientDet | 0 512 5.24 5.25 29.51 | 29.39
1 640 2.53 2.49 2379 | 24.44
2 768 1.54 1.50 19.86 | 20.51
3 896 | 0.78 0.75 14.69 | 14.84
4 1024 | 0.43 0.42 11.74 11.88
MTCNN - - 3242 | 18.53 5635 | 5145
YOLOX yolox-tiny | 416 19.43 19.29 55.36 | 55.38
yolox-s 640 15.10 | 15.44 53.81 | 53.74
yolox-m 640 8.29 8.04 4279 | 43.83
yolox-1 640 | 4.59 4.75 35.30 | 36.08

85

PeekingDuck, Release developer

Hardware

The following hardware were used to conduct the FPS benchmarks:

- CPU: 2.8 GHz 4-Core Intel Xeon (2020, Cascade Lake) CPU and 16GB RAM
- GPU: NVIDIA A100, paired with 2.2 GHz 6-Core Intel Xeon CPU and 85GB RAM

Test Conditions

The following test conditions were followed:

- input.visual, the model of interest, and dabble. fps nodes were used to perform inference on videos

- 2 videos were used to benchmark each model, one with only 1 human (single), and the other with multiple
humans (multiple)

- Both videos are about 1 minute each, recorded at ~30 FPS, which translates to about 1,800 frames to process
per video

- 1280x720 (HD ready) resolution was used, as a bridge between 640x480 (VGA) of poorer quality webcams,
and 1920x1080 (Full HD) of CCTVs

Model Accuracy

The table below shows the performance of our object detection models using the detection evaluation metrics from
COCO. Description of these metrics can be found here.

Model| Type | Size| AP | AP AP AP | AP AP | AR | AR AR AR | AR AR
loU=.50| loU=.75| small medium| large max=1 | max=10| max=100 small medium| large
YOLO | vdtiny| 416 | 17.4| 32.7 | 166 | 6.4 | 20.1 | 25.6| 16.7 | 22.8 | 21.1 6.1 23.7 | 32.1
v4 416 | 43.7| 64.0 | 48.1 | 23.1 | 49.6 | 609 | 33.3 | 49.1 | 50.0 26.2 | 56.1 | 70.3

Effi- 0 512 | 29.7| 443 | 324 | 74 | 344 | 492|253 | 345 | 348 | 7.8 |39.7 | 584

cient- | 1 640 | 35.2| 50.8 | 38.8 | 143 | 40.1 | 53.9| 28.8 | 40.5 | 40.9 156 | 463 | 62.8

Det 2 768 | 38.5| 544 | 42.1 | 189 | 42.7 | 57.1| 309 | 439 | 444 | 20.8 | 489 | 65.5
3 896 | 41.1| 57.0 | 452 | 222|451 | 58.7| 32.6 | 46.7 | 473 | 24.8 | 51.5 | 66.9
4 1024| 43.4| 59.2 | 47.8 | 242 | 47.6 | 604 | 33.8 | 49.1 | 49.7 | 273 | 539 | 68.7

YOLOX yolox-| 416 | 32.4| 50.5 | 339 | 134 | 354 | 495|282 | 435 | 457 | 20.7 | 51.7 | 65.9
tiny

yolox-| 416 | 35.6| 53.4 | 37.8 | 14.0 | 393 | 55.7| 30.3 | 46.0 | 48.1 20.9 | 54.7 | 70.8
s
yolox-| 416 | 41.6| 59.7 | 444 | 18.8 | 469 | 62.8| 339 | 51.6 | 53.7 | 269 | 60.9 | 76.8
m
yolox-| 416 | 44.5| 62.5 | 47.6 | 21.9 | 50.6 | 65.5| 355 | 542 | 56.3 31.0 | 64.0 | 78.1
1

86 Chapter 5. Model Resources & Information

https://cocodataset.org/#detection-eval

PeekingDuck, Release developer

Dataset

The MS COCO (val 2017) dataset is used. We integrated the COCO API into the PeekingDuck pipeline for loading
the annotations and evaluating the outputs from the models. All values are reported in percentages.

All images from the 80 object categories in the MS COCO (val 2017) dataset were processed.

Test Conditions

The following test conditions were followed:

- The tests were performed using pycocotools on the MS COCO dataset

- The evaluation metrics have been compared with the original repository of the respective object detection
models for consistency

5.1.3 Object Detection IDs

General Object Detection

The tables below provide the associated indices for each class in object detectors.

To detect all classes, specify detect:
pipeline_config.yml.

["*"] under the object detection node configuration in

Class name | ID Classname | ID
YOLO / YOLOX | EfficientDet YOLO / YOLOX | EfficientDet

person 0 0 elephant 20 21
bicycle 1 1 bear 21 22
car 2 2 zebra 22 23
motorcycle 3 3 giraffe 23 24
aeroplane 4 4 backpack 24 26
bus 5 5 umbrella 25 27
train 6 6 handbag 26 30
truck 7 7 tie 27 31
boat 8 8 suitcase 28 32
traffic light 9 9 frisbee 29 33
fire hydrant 10 10 skis 30 34
stop sign 11 12 snowboard 31 35
parking meter | 12 13 sports ball 32 36
bench 13 14 kite 33 37
bird 14 15 baseball bat 34 38
cat 15 16 baseball glove | 35 39
dog 16 17 skateboard 36 40
horse 17 18 surfboard 37 41
sheep 18 19 tennis racket 38 42
cow 19 20 bottle 39 43

5.1. Object Detection Models

87

https://cocodataset.org/#download
https://pypi.org/project/pycocotools/

PeekingDuck, Release developer

Class name | ID Class name | ID
YOLO / YOLOX | EfficientDet YOLO / YOLOX | EfficientDet

wine glass 40 45 dining table | 60 66
cup 41 46 toilet 61 69
fork 42 47 tv 62 71
knife 43 48 laptop 63 72
spoon 44 49 mouse 64 73
bowl 45 50 remote 65 74
banana 46 51 keyboard 66 75
apple 47 52 cell phone 67 76
sandwich 48 53 microwave 68 77
orange 49 54 oven 69 78
broccoli 50 55 toaster 70 79
carrot 51 56 sink 71 80
hot dog 52 57 refrigerator 72 81
pizza 53 58 book 73 83
donut 54 59 clock 74 84
cake 55 60 vase 75 85
chair 56 61 scissors 76 86
couch 57 62 teddy bear 77 87
potted plant 58 63 hair drier 78 88
bed 59 64 toothbrush 79 89

Face Detection

This table provides the associated indices for the model.yolo_face node.

Class name | ID
no mask
mask 1

Model Hub Models

Use the following CLI command to access the class name to ID mapping of model hub models:

Terminal Session

[~user] > peekingduck model-hub <repository name> detect-ids \
--model_type ‘<model identifier>’

where repository name is the model hub name, e.g., huggingface and model identifier is one of the mod-
els from the specified model hub, e.g., facebook/detr-resnet-50. Please note that model identifier is case
sensitive.

88 Chapter 5. Model Resources & Information

PeekingDuck, Release developer

5.2 Pose Estimation Models

5.2.1 List of Pose Estimation Models

The table below shows the pose estimation models available for each task category.

Category Model Documentation
Whole body | HRNet model.hrnet

PoseNet | model.posenet
MoveNet | model.movenet

5.2.2 Benchmarks

Inference Speed

The table below shows the frames per second (FPS) of each model type.

Model Type Size CPU GPU
single | multiple | single | multiple
PoseNet 50 225 64.46 | 51.95 136.31 | 89.37
75 225 57.62 | 47.01 132.84 | 83.73
100 225 4470 | 37.60 132.73 | 81.24
resnet 225 18.77 | 17.21 73.15 | 51.65
HRNet (YOLO) | (v4tiny) 256 x 192 (416) 5.86 1.09 21.91 13.86
MoveNet SinglePose Lightning | 192 40.78 | 40.54 9947 | -
SinglePose Thunder 256 25.13 | 24.87 92.05 -
MultiPose Lightning | 256 or multiple of 32 | 25.33 | 24.90 80.64 | 79.32

Hardware

The following hardware were used to conduct the FPS benchmarks:

- CPU: 2.8 GHz 4-Core Intel Xeon (2020, Cascade Lake) CPU and 16GB RAM
- GPU: NVIDIA A100, paired with 2.2 GHz 6-Core Intel Xeon CPU and 85GB RAM

Test Conditions

The following test conditions were followed:

- input.visual, the model of interest, and dabble. fps nodes were used to perform inference on videos

- 2 videos were used to benchmark each model, one with only 1 human (single), and the other with multiple
humans (multiple)

- Both videos are about 1 minute each, recorded at ~30 FPS, which translates to about 1,800 frames to process
per video

- 1280x720 (HD ready) resolution was used, as a bridge between 640x480 (VGA) of poorer quality webcams,
and 1920x1080 (Full HD) of CCTVs

5.2. Pose Estimation Models 89

PeekingDuck, Release developer

Model Accuracy

The table below shows the performance of our pose estimation models using the keypoint evaluation metrics from
COCO. Description of these metrics can be found here.

Model Type Size AP | AP AP AP AP | AR | AR AR AR AR
OKS=.50| OKS=.75| medium| large OKS=.50| OKS=.75| medium | large
PoseNet | 50 225 52 | 155 2.7 0.8 11.8 | 9.6 | 22.7 7.1 1.4 20.7
75 225 7.2 | 19.7 3.6 1.3 159 | 12.1| 26.5 9.3 2.2 25.5
100 225 7.7 | 20.8 4.4 1.5 17.1 | 12.6 | 27.7 10.1 2.3 26.5
resnet 225 11.9| 274 8.3 2.2 253 | 17.3| 325 15.9 2.9 36.8
HRNet (v4tiny) 256 35.8| 61.5 37.5 30.1 | 44.0 | 40.2 | 64.4 42.7 33.0 | 50.2
(YOLO) x 192
(416)
MoveNet| single- 256 x| 7.3 | 157 5.7 1.3 154 | 8.8 | 17.6 7.7 1.1 19.2
pose_lightnin@56
single- 256 x| 11.6] 21.3 10.7 3.0 23.1 | 13.1| 225 12.8 2.8 27.1
pose_thunder 256
multi- 256 x| 18.7] 36.8 16.3 9.0 31.8 | 21.0| 38.5 19.2 9.3 37.0
pose_lightnin@56

Dataset
The MS COCO (val 2017) dataset is used. We integrated the COCO API into the PeekingDuck pipeline for loading

the annotations and evaluating the outputs from the models. All values are reported in percentages.

All images from the “person” category in the MS COCO (val 2017) dataset were processed.
Test Conditions
The following test conditions were followed:

- The tests were performed using pycocotools on the MS COCO dataset

- The evaluation metrics have been compared with the original repository of the respective pose estimation
models for consistency

90 Chapter 5. Model Resources & Information

https://cocodataset.org/#keypoints-eval
https://cocodataset.org/#download
https://pypi.org/project/pycocotools/

PeekingDuck, Release developer

5.2.3 Keypoint IDs

Whole Body

Keypoint ID | Keypoint | ID
nose 0 | left wrist 9
left eye 1 right wrist | 10
right eye 2 | left hip 11
left ear 3 right hip 12
right ear 4 | leftknee 13
left shoulder 5 right knee | 14
right shoulder | 6 | left ankle 15
left elbow 7 | rightankle | 16
right elbow 8

5.3 Object Tracking Models

5.3.1 List of Object Tracking Models

The table below shows the object tracking models available for each task category.

Category | Model Documentation

General IoU Tracker dabble.tracking
OpenCV MOSSE Tracker | dabble.tracking

Human JDE model. jde
FairMOT model . fairmot

5.3.2 Benchmarks

Inference Speed

The table below shows the frames per second (FPS) of each model type.

Model Object Detector Type | Input Size | CPU | GPU
IoU Tracker with YOLOX yolox-m - 7.87 | 36.18
OpenCV MOSSE Tracker with YOLOX | yolox-m - 6.74 | 21.45
JDE - - 1.86 | 26.32
FairMOT - 864 x 480 | 0.30 | 22.60

5.3. Object Tracking Models

91

PeekingDuck, Release developer

Hardware

The following hardware were used to conduct the FPS benchmarks:

- CPU: 2.8 GHz 4-Core Intel Xeon (Cascade Lake) CPU and 16GB RAM
- GPU: NVIDIA A100, paired with 2.2 GHz 6-Core Intel Xeon CPU and 85GB RAM

Test Conditions
The following test conditions were followed:

- input.visual, the model of interest, and dabble. fps nodes were used to perform inference on videos

- A video sequence from the MOT Challenge dataset (MOT16-04) was used

- The video sequence has 1050 frames and is encoded at 30 FPS, which translates to about 35 seconds

- 1280x720 (HD ready) resolution was used, as a bridge between 640x480 (VGA) of poorer quality webcams,
and 1920x1080 (Full HD) of CCTVs

Model Accuracy

The table below shows the performance of our object tracking models using multiple object tracker (MOT) metrics
from MOT Challenge. Description of these metrics can be found here.

Model Object Detector Type | MOTA | IDF1 | ID Sw. | FP FN

IoU Tracker with YOLOX yolox-m 34.1 409 | 960 8997 | 62830

OpenCV MOSSE Tracker with YOLOX | yolox-m 32.8 38 2349 7695 | 65268

JDE - 70.1 65.1 1321 6412 | 25292

FairMOT - 81.8 80.9 | 536 3663 | 15903
Dataset

The MOT16 (train) dataset is used. We integrated the MOT Challenge API into the PeekingDuck pipeline for loading
the annotations and evaluating the outputs from the models. MOTA and IDF] are reported in percentages while /DS,
FP, and FN are raw numbers.

Only the “pedestrian” category in MOT16 (train) was processed.

5.4 Crowd Counting Models

5.4.1 List of Crowd Counting Models

The table below shows the crowd counting models available.

Model Documentation
CSRNet | model.csrnet

92 Chapter 5. Model Resources & Information

https://motchallenge.net/results/MOT16/#metrics
https://motchallenge.net/data/MOT16/

PeekingDuck, Release developer

5.4.2 Benchmarks

Model Accuracy

The table below shows the performance of CSRNet obtained from the original GitHub repo, using Mean Absolute
Error (MAE) as the metric. The reported metrics are close to the results from the CSRNet paper.

Dataset

Model Type | Dataset MAE
CSRNet | dense | ShanghaiTech Part A | 65.92
sparse | ShanghaiTech Part B | 11.01

The ShanghaiTech dataset was used. It contains 1,198 annotated images split into 2 parts: Part A contains 482 images
with highly congested scenes, while Part B contains 716 images with relatively sparse crowd scenes.

5.5 Instance Segmentation Models

5.5.1 List of Instance Segmentation Models

The table below shows the instance segmentation models available.

5.5.2 Benchmarks

Inference Speed

Model Documentation
Mask R-CNN | model .mask_rcnn
YolactEdge model.yolact_edge

The table below shows the frames per second (FPS) of each model type.

Model Type Size CPU GPU
single | multiple | single | multiple
Mask R-CNN | r50-fpn 800-1333 | 0.76 0.72 2230 | 18.58
r101-fpn 800-1333 | 0.61 0.57 17.14 | 14.83
YolactEdge r50-fpn 550 2.99 2.93 40.84 | 33.94
r101-fpn 550 2.32 2.27 29.55 | 25.89
mobilenetv2 | 550 4.93 4.64 48.59 | 36.66

5.5. Instance Segmentation Models

93

https://github.com/Neerajj9/CSRNet-keras
https://arxiv.org/pdf/1802.10062.pdf
https://www.kaggle.com/tthien/shanghaitech

PeekingDuck, Release developer

Hardware

The following hardware were used to conduct the FPS benchmarks:

- CPU: 2.8 GHz 4-Core Intel Xeon (2020, Cascade Lake) CPU and 16GB RAM
- GPU: NVIDIA A100, paired with 2.2 GHz 6-Core Intel Xeon CPU and 85GB RAM

Test Conditions

The following test conditions were followed:

- input.visual, the model of interest, and dabble. fps nodes were used to perform inference on videos
- 2 videos were used to benchmark each model, one with only 1 human (single), and the other with multiple

humans (multiple)

- Both videos are about 1 minute each, recorded at ~30 FPS, which translates to about 1,800 frames to process
per video
- 1280x720 (HD ready) resolution was used, as a bridge between 640x480 (VGA) of poorer quality webcams,
and 1920x1080 (Full HD) of CCTVs

Model Accuracy

The table below shows the performance of our Instance Segmentation models using the detection evaluation metrics
from COCO. Description of these metrics can be found here.

Evaluation on masks

Model | Type | Size | AP | AP AP AP | AP AP | AR | AR AR AR | AR AR
loU=.50| loU=.75| small | medium| large | max=1| max=10| max=10Q small | medium| large
Mask | r50- 800- | 34.5| 56.0 | 36.7 | 17.8| 379 | 47.1| 29.7 | 45.6 | 47.6 | 274 | 514 | 63.8
R- fpn 1333
CNN r101- | 800- | 37.1| 59.0 | 39.6 | 20.4 | 41.1 | 49.8| 314 | 49.1 | 514 | 319 | 556 | 673
fpn 1333
Yolact- | 150- 550 | 27.8| 45.6 | 289 | 104 | 30.0 | 43.9| 26.3 | 37.5 | 38.2 163 | 419 | 57.2
Edge fpn
r101- | 550 | 29.6| 47.8 | 31.1 | 11.3| 32.3 | 46.3| 274 | 389 | 39.7 174 | 43.6 | 59.6
fpn
mo- 550 | 219|372 | 226 | 7.0 | 229 | 347|225 | 31.7 | 32.3 12.0 | 34.8 | 483
bilenety2
94 Chapter 5. Model Resources & Information

https://cocodataset.org/#detection-eval

PeekingDuck, Release developer

Evaluation on bounding boxes

Model | Type | Size | AP | AP | AP | AP | AP | AP | AR | AR | AR AR | AR | AR
loU=.50| loU=.75| small | medium| large | max=1| max=10| max=10Q small | medium| large
Mask | r50- 800- | 37.8] 592 | 41.1 | 21.6| 41.2 | 493 | 314 | 495 | 519 | 32.6| 55.7 | 66.6
R- fpn 1333
CNN | r101- | 800- | 41.8| 62.2 | 454 | 249 | 458 | 543|344 | 546 | 573 | 382 | 614 | 724
fpn 1333
Yolact- | 150- 550 | 303|498 | 32.2 | 144| 32.1 | 44.6| 274 | 40.1 | 41.2 | 21.6| 43.7 | 575
Edge fpn
r101- | 550 | 32.6| 52.5 | 349 | 152|350 | 47.6| 28.6 | 41.8 | 429 | 22.6| 459 | 59.9
fpn
mo- 550 | 23.2| 40.8 | 23.8 | 93 | 234 | 35.1| 229 | 335 | 345 15.8 | 352 | 49.1
bilenety2
Dataset

The MS COCO (val 2017) dataset is used. We integrated the COCO API into the PeekingDuck pipeline for loading
the annotations and evaluating the outputs from the models. All values are reported in percentages.

All images from the 80 object categories in the MS COCO (val 2017) dataset were processed.

Test Conditions

The following test conditions were followed:

- The tests were performed using pycocotools on the MS COCO dataset

- The evaluation metrics have been compared with the original repository of the respective instance
segmentation models for consistency

5.5.3 Instance Segmentation IDs

General Instance Segmentation

The tables below provide the associated indices for each class.

To detect all classes, specify detect: ["*"] under the instance segmentation node configuration in
pipeline_config.yml.

5.5. Instance Segmentation Models 95

https://cocodataset.org/#download
https://pypi.org/project/pycocotools/

PeekingDuck, Release developer

Class name | ID Classname | ID
Mask R-CNN | YolactEdge Mask R-CNN | YolactEdge
person 0 0 elephant 21 20
bicycle 1 1 bear 22 21
car 2 2 zebra 23 22
motorcycle 3 3 giraffe 24 23
aeroplane 4 4 backpack 26 24
bus 5 5 umbrella 27 25
train 6 6 handbag 30 26
truck 7 7 tie 31 27
boat 8 8 suitcase 32 28
traffic light 9 9 frisbee 33 29
fire hydrant 10 10 skis 34 30
stop sign 12 11 snowboard 35 31
parking meter | 13 12 sports ball 36 32
bench 14 13 kite 37 33
bird 15 14 baseball bat 38 34
cat 16 15 baseball glove | 39 35
dog 17 16 skateboard 40 36
horse 18 17 surfboard 41 37
sheep 19 18 tennis racket 42 38
cow 20 19 bottle 43 39
Class name | ID Class name | ID
Mask R-CNN | YolactEdge Mask R-CNN | YolactEdge
wine glass 45 40 dining table | 66 60
cup 46 41 toilet 69 61
fork 47 42 tv 71 62
knife 48 43 laptop 72 63
spoon 49 44 mouse 73 64
bowl 50 45 remote 74 65
banana 51 46 keyboard 75 66
apple 52 47 cell phone 76 67
sandwich 53 48 microwave 77 68
orange 54 49 oven 78 69
broccoli 55 50 toaster 79 70
carrot 56 51 sink 80 71
hot dog 57 52 refrigerator 81 72
pizza 58 53 book 83 73
donut 59 54 clock 84 74
cake 60 55 vase 85 75
chair 61 56 scissors 86 76
couch 62 57 teddy bear 87 77
potted plant 63 58 hair drier 88 78
bed 64 59 toothbrush 89 79

Chapter 5. Model Resources & Information

PeekingDuck, Release developer

5.6 Bibliography

This document contains links, references, academic literature, and github repositories for related Computer Vision
technologies and projects.

5.6.1 Legend

Symbol | Remarks
Available in PeekingDuck
Singapore-based research

5.6.2 Object Detection

Reference Paper | Code
YOLOX v v
YOLOv4 v v
EfficientDet v v
MTCNN v v
Recent advances in deep learning for object detection (2020) | v NA

5.6.3 Pose Estimation

Reference Paper Code
HRNet v v
PoseNet v v
MoveNet TF Blog | TF Hub
NTU RGB+D Dataset (2016) | v/ NA

5.6.4 Crowd Counting

Reference | Paper | Code
CSRNet v v

5.6.5 Object Tracking

Reference | Paper | Code
JDE v v
FairMOT v v

5.6. Bibliography 97

https://arxiv.org/abs/2107.08430
https://github.com/Megvii-BaseDetection/YOLOX
http://arxiv.org/abs/2004.10934
https://github.com/hunglc007/tensorflow-yolov4-tflite
http://arxiv.org/abs/1911.09070
https://github.com/xuannianz/EfficientDet
https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf
https://github.com/kpzhang93/MTCNN_face_detection_alignment
https://ink.library.smu.edu.sg/sis_research/5096
http://arxiv.org/abs/1908.07919
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
http://arxiv.org/abs/1803.08225
https://github.com/rwightman/posenet-python
https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
https://tfhub.dev/google/movenet/multipose/lightning/1
https://arxiv.org/abs/1604.02808
https://arxiv.org/pdf/1802.10062.pdf
https://github.com/Neerajj9/CSRNet-keras
https://arxiv.org/abs/1909.12605v2
https://github.com/Zhongdao/Towards-Realtime-MOT
https://arxiv.org/abs/2004.01888
https://github.com/ifzhang/FairMOT

PeekingDuck, Release developer

5.6.6 Instance Segmentation

Reference Paper | Code
Mask R-CNN | v Torchvision Models
YolactEdge v v

98

Chapter 5. Model Resources & Information

https://arxiv.org/abs/1703.06870
https://pytorch.org/vision/0.11/_modules/torchvision/models/detection/mask_rcnn.html
https://arxiv.org/abs/2012.12259
https://github.com/haotian-liu/yolact_edge

CHAPTER
SIX

EDGE Al

PeekingDuck supports running optimized TensorRT' models on devices with NVIDIA GPUs. Using the TensorRT
model on these devices provides a speed boost over the regular TensorFlow/PyTorch version. A potential use case is
running PeekingDuck on an NVIDIA Jetson device for Edge Al inference.

Currently, PeekingDuck includes TensorRT versions of the following models:
1. MoveNet model for pose estimation,

2. YOLOX model for object detection.

6.1 Installing TensorRT

The following packages are required to run PeekingDuck’s TensorRT models:
1. TensorFlow
2. PyTorch
3. PyCUDA

As the actual installation steps vary greatly depending on the user’s device, operating system, software environment,
and pre-installed libraries/packages, we are unable to provide step-by-step installation instructions.

The user may refer to NVIDIA’s TensorRT Documentation for detailed TensorRT installation information.

6.2 Using TensorRT Models

To use the TensorRT version of a model, change the model_format of the model configuration to tensorrt.

The following pipeline_config.yml shows how to use the MoveNet TensorRT model for pose estimation:

nodes:
- input.visual:
source: https://storage.googleapis.com/peekingduck/videos/wave.mp4
- model.movenet:
model_format: tensorrt
model_type: singlepose_lightning
- draw.pose
- dabble. fps
- draw.legend:

(continues on next page)

I NVIDIA TensorRT Reference

99

https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://developer.nvidia.com/tensorrt

PeekingDuck, Release developer

(continued from previous page)

show: ["fps"]
- output.screen

The following pipeline_config.yml shows how to use the YOLOX TensorRT model for object detection:

nodes:
- input.visual:
source: https://storage.googleapis.com/peekingduck/videos/cat_and_computer.mp4
- model.yolox:
detect: ["cup", "cat",
model_format: tensorrt
model_type: yolox-tiny
- draw.bbox:
show_labels: True # configure draw.bbox to display object labels
- dabble. fps
- draw.legend:
show: ["fps"]
- output.screen

n

"laptop", "keyboard", "mouse"]

6.3 Performance Speedup

The following charts show the speed up obtainable with the TensorRT models. The numbers were obtained from our
in-house testing with the actual devices.

6.3.1 NVIDIA Jetson Xavier NX with 8GB RAM

MoveNet FPS
MNWIDIA Jetson Kavier N« 8GE RAM
M TensorFlow B TensorRT

Multipose Lightning

Singlepose
Lightning

Singlepose Thunder

0 10 20 30 40

FPS (Higher is better)

100 Chapter 6. Edge Al

PeekingDuck, Release developer

YOLOX FPS
MYIDIA Jetsan Aavier Mx 8GE RAM
B PyTorch B TensorRT

YOLOX-Tiny
YOLOX-Small
YOLOK-Medium

YOLOX-Large

FPS (Higheris betten

Fig. 1: Jetson Xavier NX specs used for testing:"¢¢ 101-2

CPU: 6 cores (6MB L2 + 4MB L3) GPU: 384-core Volta, 48 Tensor cores RAM: 8 GB

6.3.2 NVIDIA Jetson Xavier AGX with 16GB RAM

Test Conditions

The following test conditions were followed:

- input.visual, the model of interest, and dabble. fps nodes were used to perform inference on videos

- 2 videos were used to benchmark each model, one with only 1 human (single), and the other with multiple
humans (multiple)

- Both videos are about 1 minute each, recorded at ~30 FPS, which translates to about 1,800 frames to process
per video

- 1280x720 (HD ready) resolution was used, as a bridge between 640x480 (VGA) of poorer quality webcams,
and 1920x1080 (Full HD) of CCTVs

- FPS numbers are averaged over 5 separate runs

2 NVIDIA Jetson Xavier NX Tech Specs
3 NVIDIA Jetson Xavier AGX Tech Specs

6.3. Performance Speedup 101

https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

PeekingDuck, Release developer

MoveNet FPS

NVIDIA Jetson Xavier AGX 16GE RAM
W TensorFlow W TensorRT

Multipose Lightning
Singlepose Lightning
Singlepose Thunder
0 20 40 60
FP3 (Higher is better)
YOLOX FPS
NVIDIA Jetson Xavier AGX 16GE RAM
B PyTorch M TensorRT
YOLOX-Tiny
YOLOX-Small
YOLOX-Medium
YOLOX-Large
0 10 20 30 40
FPS (Higher is better)

Fig. 2: Jetson Xavier AGX specs used for testing:*
CPU: 8 cores (8SMB L2 + 4MB L3) GPU: 512-core Volta, 64 Tensor cores RAM: 16 GB

102 Chapter 6. Edge Al

PeekingDuck, Release developer

6.4 References

6.4. References 103

PeekingDuck, Release developer

104 Chapter 6. Edge Al

CHAPTER
SEVEN

USE CASES

Computer Vision (CV) problems come in various forms, and the gallery below shows common CV use cases which can
be tackled by PeekingDuck right out of the box. Areas include privacy protection, smart monitoring, and COVID-19
prevention and control. Users are encouraged to mix and match different PeekingDuck nodes and create your own
custom nodes for your specific use case - the only limit is your imagination!

7.1 Privacy Protection

7.1.1 Privacy Protection (Faces)

Overview
As organizations collect more data, there is a need to better protect the identities of individuals in public and pri-

vate places. Our solution performs face anonymization, and can be used to comply with the General Data Protection
Regulation (GDPR) or other data privacy laws.

Our solution automatically detects and mosaics (or blurs) human faces. This is explained in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file pri-
vacy_protection_faces.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/privacy_protection_faces.yml>

105

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_faces.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_faces.yml

PeekingDuck, Release developer

How It Works

There are two main components to face anonymization:
1. Face detection, and
2. Face de-identification.

1. Face Detection

We use an open source face detection model known as MTCNN to identify human faces. This allows the application to
identify the locations of human faces in a video feed. Each of these locations is represented as a pair of x, y coordinates
in the form [z1, y1, 2, Y2|, where (z1, y1) is the top left corner of the bounding box, and (22, y2) is the bottom right.
These are used to form the bounding box of each human face detected. For more information on how to adjust the
MTCNN node, check out the MTCNN configurable parameters.

2. Face De-Identification

To perform face de-identification, we pixelate or gaussian blur the areas bounded by the bounding boxes.

Nodes Used

These are the nodes used in the earlier demo (also in privacy_protection_faces.yml):

nodes:
- input.visual:
source: 0

model .mtcnn
- draw.mosaic_bbox
output.screen

1. Face Detection Node

As mentioned, we use the MTCNN model for face detection. It is able to detect human faces with face masks. Please
take a look at the benchmarks of object detection models that are included in PeekingDuck if you would like to use a
different model or model type better suited to your use case.

2. Face De-Identification Nodes

You can mosaic or blur the faces detected using the draw.mosaic_bbox or draw.blur_bbox in the run config dec-
laration.

Fig. 1: De-identification with mosaic (left) and blur (right).

3. Adjusting Nodes

With regard to the MTCNN model, some common node behaviors that you might want to adjust are:

106 Chapter 7. Use Cases

https://arxiv.org/abs/1604.02878
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_faces.yml

PeekingDuck, Release developer

* min_size: Specifies in pixels the minimum height and width of a face to be detected. (default = 40) You may
want to decrease the minimum size to increase the number of detections.

* network_thresholds: Specifies the threshold values for the Proposal Network (P-Net), Refine Network (R-
Net), and Output Network (O-Net) in the MTCNN model. (default = [0.6, 0.7, 0.7]) Calibration is performed at
each stage in which bounding boxes with confidence scores less than the specified threshold are discarded.

» score_threshold: Specifies the threshold value in the final output. (default = 0.7) Bounding boxes with
confidence scores less than the specified threshold in the final output are discarded. You may want to lower
network_thresholds and score_threshold to increase the number of detections.

In addition, some common node behaviors that you might want to adjust for the dabble.mosaic_bbox and dabble.
blur_bbox nodes are:

¢ mosaic_level: Defines the resolution of a mosaic filter (width x height); the value corresponds to the number
of rows and columns used to create a mosaic. (default = 7) For example, the default value creates a 7 X 7 mosaic
filter. Increasing the number increases the intensity of pixelization over an area.

¢ blur_level: Defines the standard deviation of the Gaussian kernel used in the Gaussian filter. (default = 50)
The higher the blur level, the greater the blur intensity.

7.1.2 Privacy Protection (License Plates)

Overview
Posting images or videos of our vehicles online might lead to others misusing our license plate numbers to reveal our

personal information. Our solution performs license plate anonymization, and can also be used to comply with the
General Data Protection Regulation (GDPR) or other data privacy laws.

Our solution automatically detects and blurs vehicles’ license plates. This is explained in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file pri-
vacy_protection_license_plates.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/privacy_protection_license_plates.yml>

7.1. Privacy Protection 107

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_license_plates.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_license_plates.yml

PeekingDuck, Release developer

How It Works

There are two main components to license plate anonymization:
1. License plate detection, and
2. License plate de-identification.

1. License Plate Detection

We use open-source object detection models under the YOLOv4 family to identify the locations of the license plates
in an image/video feed. Specifically, we offer the YOLOv4-tiny model, which is faster, and the YOLOv4 model, which
provides higher accuracy. The locations of detected license plates are returned as an array of coordinates in the form
[1, Y1, T2, y2], where (21,y1) is the top left corner of the bounding box, and (z2, y2) is the bottom right. These are
used to form the bounding box of each license plate detected. For more information on how to adjust the license plate
detector node, check out the license plate detector configurable parameters.

2. License Plate De-Identification

To perform license plate de-identification, the areas bounded by the bounding boxes are blurred using a Gaussian blur
function.

Nodes Used

These are the nodes used in the earlier demo (also in privacy_protection_license_plates.yml):

nodes:
- input.visual:

source: <path/to/video with cars>
model.yolo_license_plate
draw.blur_bbox
output.screen

1. License Plate Detection Node

By default, model.yolo_license_plate uses the v4 model type to detect license plates. If faster inference speed is
required, the v4tiny model type can be used instead.

2. License Plate De-Identification Nodes

You can choose to mosaic or blur the detected license plate using the draw.mosaic_bbox or draw.blur_bbox node
in the run config declaration.

Fig. 2: De-identification with mosaic (left) and blur (right).

3. Adjusting Nodes

108 Chapter 7. Use Cases

https://arxiv.org/abs/2004.10934
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_license_plates.yml

PeekingDuck, Release developer

With regard to the YOLOv4 model, some common node configurations that you might want to adjust are:

» score_threshold: The bounding boxes with confidence score less than the specified score threshold are dis-
carded. (default =0.1)

¢ iou_threshold: The overlapping bounding boxes above the specified Intersection over Union (IoU) threshold
are discarded. (default = 0.3)

In addition, some common node behaviors that you might want to adjust for the dabble .mosaic_bbox and dabble.
blur_bbox nodes are:

* mosaic_level: Defines the resolution of a mosaic filter (width x height); the value corresponds to the number
of rows and columns used to create a mosaic. (default = 7) For example, the default value creates a 7 x 7 mosaic
filter. Increasing the number increases the intensity of pixelization over an area.

e blur_level: Defines the standard deviation of the Gaussian kernel used in the Gaussian filter. (default = 50)
The higher the blur level, the greater the blur intensity.

7.1.3 Privacy Protection (People & Computer Screens)

Overview

Videos and pictures often contain people and other sensitive visual information (e.g., the display on computer screens),
even though this information might not be needed at all for visual processing. Our solution performs full body
anonymization and computer screen blurring to protect the identities of individuals and the sensitive information on
computer screens. It can be used to comply with the General Data Protection Regulation (GDPR) or other data privacy
laws.

In this example use case, we want to count the number of people in the office, but also want to avoid compromising the
privacy of the office inhabitants or information displayed on computer screens.

Our solution automatically detects people, laptop and computer screens, and then blurs them. This is explained in the
How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file pri-
vacy_protection_people_screens.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/privacy_protection_people_screens.yml>

7.1. Privacy Protection 109

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_people_screens.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_people_screens.yml

PeekingDuck, Release developer

How It Works

There are 2 main components to our solution:
1. Person and computer screen segmentation, and
2. Person and computer screen blurring.

1. Person and Computer Screen Segmentation

‘We use an open source instance segmentation model known as Mask R-CNN to obtain the masks of persons, computer
screens and laptops. The masks are akin to the input frames or images, except that it only has a single channel and each
pixel on the mask is a binary of either 1 or 0, which indicates whether a specific class of object is present (1) or absent
(0) in a particular location of the image. For more information on how to adjust the mask_rcnn node, check out its
configurable parameters.

2. Person and Computer Screen Blurring

To blur the people and computer screens, we pixelate or gaussian blur the image pixels where the pixel values of the
relevant masks are equal to 1 (indicating presence of object).

Nodes Used

These are the nodes used in the earlier demo (also in privacy_protection_people_screens.yml):

nodes:
- input.visual:
source: <path/to/video>
- model .mask_rcnn:
detect: ["tv", "laptop"]
- draw.instance_mask:
effect: {blur: 50}
- model.mask_rcnn:
detect: ["person"]
- dabble.bbox_count
- draw.instance_mask:
effect: {blur: 50}
- draw.bbox:
show_labels: True
- draw.legend:
show: ["count"]
- output.screen

This config includes the use of two model.mask_rcnn and draw.instance_mask nodes to separate the detected instances
of “person” class from the “tv” and “laptop” classes, so that drawing and counting of bboxes are only performed on
the “person” class. This repetition is not required if only anonymization is performed.

1. Instance Segmentation Node

In this example use case, we used the Mask R-CNN model for instance segmentation. It can detect persons as well
as computer monitors. Please take a look at the benchmarks of instance segmentation models that are included in
PeekingDuck if you would like to use a different model or model type better suited to your use case.

2. People and Screens De-Identification Node
The detected people and screens are blurred using the draw. instance_mask node.

3. Object Counting Node

110 Chapter 7. Use Cases

https://arxiv.org/abs/1703.06870
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/privacy_protection_people_screens.yml

PeekingDuck, Release developer

dabble.bbox_count counts the total number of detected bounding boxes. This node has no configurable parameters.
4. Display Bounding Box Node
Then we draw bounding boxes around the detected persons using the draw.bbox node.
5. Person Count Display Node
The total number of detected persons are shown using the draw.legend node.
6. Adjusting Nodes
With regard to the Mask R-CNN model, some common node behaviors that you might want to adjust are:
* model_type: Defines the type of backbones to be used.
* score_threshold: Bounding boxes with classification score below the threshold will be discarded.

* mask_threshold: The confidence threshold for binarizing the masks’ pixel values, whether an object is detected
at a particular pixel.

In addition, some common node behaviors that you might want to adjust for the draw.instance_mask node are:

e blur: Blurs the area using this value as the “blur_kernel_size” parameter. Larger values gives more intense
blurring.

e mosaic: Mosaics the area using this value as the resolution of a mosaic filter (width x height). The value
corresponds to the number of rows and columns used to create a mosaic. For example, the setting (mosaic:
25) creates a 25 x 25 mosaic filter. Increasing the number increases the intensity of pixelation over an area.

Privacy Protection (Faces) Privacy Protection (License Plates)

Privacy Protection (People and Screens)

7.2 Smart Monitoring

7.2.1 Crowd Counting

Overview

In Computer Vision (CV), crowd counting refers to the technique of counting or estimating the number of people in a
crowd. This can be used to estimate the number of people attending an event, monitor crowd levels and prevent human
stampedes.

Our solution utilizes CSRNet to estimate the size of a crowd. In addition, it generates a heat map that can be used to
pinpoint possible bottlenecks at a venue. This is explained in the How It Works section.

7.2. Smart Monitoring 111

privacy_protection_faces.html
privacy_protection_license_plates.html
privacy_protection_people_screens.html

PeekingDuck, Release developer

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file crowd_counting.yml
as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/crowd_counting.yml>

You may like to try it on this sample video.

How It Works

There are two main components to our solution:
1. Crowd counting, and
2. Heat map generation.

1. Crowd Counting

We use an open source crowd counting model known as CSRNet to predict the number of people in a sparse or dense
crowd. The solution uses the sparse crowd model by default and can be configured to use the dense crowd model if
required. The dense and sparse crowd models were trained using data from ShanghaiTech Part A and Part B respectively.

As a rule of thumb, you might want to use the dense crowd model if the people in a given image or video frame are
packed shoulder to shoulder, e.g., stadiums. For more information on how to adjust the CSRNet node, check out its
configurable parameters.

2. Heat Map Generation (Optional)

We generate a heat map using the density map estimated by the model. Areas that are more crowded are highlighted
in red while areas that are less crowded are highlighted in blue.

Nodes Used

These are the nodes used in the earlier demo (also in crowd_counting.yml):

nodes:
- input.visual:
source: <path/to/video with crowd>
model.csrnet:
model_type: dense
- draw.heat_map
draw.legend:
show: ["count"]
output.screen

1. Crowd Counting Node

As mentioned, we use CSRNet to estimate the size of a crowd. As the models were trained to recognize congested
scenes, the estimates are less accurate if the number of people is low, i.e., below ten. In such scenarios, you should
consider using the object detection models included in our repo.

112 Chapter 7. Use Cases

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/crowd_counting.yml
https://storage.googleapis.com/peekingduck/videos/large_crowd.mp4
https://arxiv.org/pdf/1802.10062.pdf
https://github.com/desenzhou/ShanghaiTechDataset
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/crowd_counting.yml

PeekingDuck, Release developer

2. Heat Map Generation Node (Optional)

The heat map generation node superimposes a heat map over a given image or video frame.
3. Adjusting Nodes

Some common node behaviors that you might want to adjust are:

* model_type: This specifies the model to be used, i.e., sparse or dense. By default, our solution uses the
sparse crowd model. As a rule of thumb, you might want to use the dense crowd model if the people in a given
image or video frame are packed shoulder to shoulder, e.g., stadiums.

» width: This specifies the input width. By default, the width of an image will be resized to 640 for inference. The
height of the image will be resized proportionally to preserve its aspect ratio. In general, decreasing the width
of an image will improve inference speed. However, this might impact the accuracy of the model.

7.2.2 Object Counting (Present)

Overview

Object counting (present) is a solution within PeekingDuck’s suite of smart monitoring use cases. It counts the number
of objects detected by PeekingDuck’s object detection models at the present point in time, and calculates statistics such
as the cumulative average, maximum and minimum for further analytics. Up to 80 fypes of objects can be counted, in-
cluding humans, vehicles, animals and even household objects. Thus, this can be applied to a wide variety of scenarios,
from traffic control to counting livestock.

See also:

For advanced counting tasks such as counting tracked objects over time or counting within specific zones, refer to
PeekingDuck’s other smart monitoring use cases.

In the GIF above, the count and statistics change as the number of detected persons change. This is explained in the
How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file ob-
ject_counting_present.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/object_counting_present.yml>

7.2. Smart Monitoring 113

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_present.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_present.yml

PeekingDuck, Release developer

How It Works

There are 3 main components to this solution:
1. Object detection,
2. Count detections, and
3. Calculate statistics.

1. Object Detection

We use an open source object detection model known as YOLOv4 and its smaller and faster variant known as YOLOv4-
tiny to identify the bounding boxes of chosen objects we want to detect. This allows the application to identify where
objects are located within the video feed. The location is returned as two x, y coordinates in the form [z1, y1, 2, y2],
where (1, y1) is the top left corner of the bounding box, and (z2, y2) is the bottom right. These are used to form the
bounding box of each object detected. For more information on how to adjust the yolo node, check out its configurable
parameters.

2. Count Detections

To count the number of objects detected, we simply take the sum of the number of bounding boxes detected for the
object category.

3. Calculate Statistics

The cumulative average, minimum and maximum over time is calculated from the count from each frame.

Nodes Used

These are the nodes used in the earlier demo (also in object_counting_present.yml):

nodes:
- input.visual:
source: 0
- model.yolo:
detect: ["person"]
- dabble.bbox_count
- dabble.statistics:
identity: count
- draw.bbox
- draw.legend:
show: ["count", "cum_avg", "cum_max", "cum_min"]
- output.screen

1. Object Detection Node

By default, the node uses the YOLOv4-tiny model for object detection, set to detect people. Please take a look at the
benchmarks of object detection models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Object Counting Node

dabble.bbox_count takes the detected bounding boxes and outputs the total count of bounding boxes. This node has
no configurable parameters.

3. Statistics Node

114 Chapter 7. Use Cases

https://arxiv.org/abs/2004.10934
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_present.yml

PeekingDuck, Release developer

The dabble.statistics node calculates the cum_avg, cum_max and cum_min from the output of the object counting
node.

4. Adjusting Nodes

For the object detection model used in this demo, please see the documentation for adjustable behaviors that can
influence the result of the object counting node.

For more adjustable node behaviors not listed here, check out the API Documentation.

7.2.3 Object Counting (Over Time)
Overview

Object counting over time involves detecting and tracking unique objects, and incrementing the count when new objects
appear. When applied to the vehicles in the GIF below, it can count the total number of vehicles passing by over a period
of time, aiding transportation planning by identifying periods of peak traffic. This use case is not limited to just vehicles,
as up to 80 types of objects can be monitored (including animals), giving rise to a wide breadth of potential applications.

See also:

While it is also possible to count people over time with this use case, more accurate results can be obtained by using
the People Counting (Over Time) use case.

See also:

If you wish to only count the number objects at an instance rather than a cumulative total over a period of time, the
simpler Object Counting (Present) use case without requiring object tracking would be more suitable.

Object counting over time is achieved by detecting the objects using an object detection model, then tracking each
unique object. As a new object appears, the number of counted objects is incremented. This is explained in the How It
Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file ob-
ject_counting_over_time.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/object_counting_over_time.yml>

7.2. Smart Monitoring 115

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_over_time.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_over_time.yml

PeekingDuck, Release developer

How It Works

Object counting over time comprises three main components:
1. Object detection,
2. Tracking the outputs of object detection, and
3. Incrementing the count.

1. Object Detection

The EfficientDet model is used here to predict the bounding boxes of objects of interest. This allows the application to
identify where each object is located within the video feed. The location is returned as a pair of x, y coordinates in the
form [z1,y1, 2, Y], where (z1,y1) is the top-left corner of the bounding box, and (x5, y2) is the bottom right.

2. Tracking the Outputs of Object Detection

An Intersection over Union (IoU) tracker adapted from this paper is used on the bounding boxes from the object detec-
tion model to produce tracked identities (IDs) for each bounding box. The IoU tracker continues a track by associating
the detection with the highest IoU to the last detection in the previous frame. For example, Car 8 in frame n continues
to be tracked as Car 8 in frame n+1 as both instances of Car 8 are within close proximity (high IoU) of each other.
This assumes that the object detector correctly predicts a bounding box per frame for each object to be tracked, and
also assumes that the frame rate of the video is high enough to allow unambigious IoU overlaps between consecutive
frames.

Another available option is the Minimum Output Sum of Squared Error (MOSSE) tracker which we have adapted
from the OpenCV package. It is a correlation filter based tracker which uses Fast Fourier Transform (FFT) to perform
operations in the frequency domain, reducing computational complexity. More details can be found from this paper.

3. Incrementing the Count

Monotonically increasing integer IDs beginning from 0 are assigned to new unique objects. For example, the first
tracked object is assigned an ID of 0, the second tracked object is assigned an ID of 7, and so on. Thus the total number
of unique objects that have appeared in the entire duration is simply the cumulative maximum.

Nodes Used

These are the nodes used in the earlier demo (also in object_counting_over_time.yml):

nodes:
- input.visual:
source: <path/to/video with cars>
- model.efficientdet:
detect: ["car"]
- dabble.tracking:
tracking_type: "iou"
- dabble.statistics:
maximum: obj_attrs["ids"]
- draw.bbox
- draw.tag:
show: ["ids"]
- draw.legend:
show: ["cum_max"]
- output.screen

116 Chapter 7. Use Cases

http://elvera.nue.tu-berlin.de/files/1517Bochinski2017.pdf
https://www.cs.colostate.edu/~draper/papers/bolme_cvpr10.pdf
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/object_counting_over_time.yml

PeekingDuck, Release developer

1. Object Detection Node

In the demo, the model.efficientdet node is used for object detection, set to detect cars. As mentioned in the
earlier How It Works section, for object tracking to work well, the upstream object detector needs to produce predictions
which are as accurate as possible. Please take a look at the benchmarks of object detection models that are included in
PeekingDuck if you would like to use a different model or model type better suited to your use case.

2. Tracking Node

The dabble.tracking node used here is not an Al model but uses heuristics, hence it falls under the category of
dabble nodes instead of model nodes. It needs to be paired with an upstream object detector node, but this also gives
it a key advantage - it can track any of the 80 fypes of detectable objects. In contrast, the People Counting (Over Time)
use case uses a single model node purpose-built for both human detection and tracking, giving it more accuracy but
limiting its usage to only humans.

3. Statistics Node

The dabble.statistics node retrieves the maximum detected ID for each frame. If the ID exceeds the previous
maximum, the cum_max (cumulative maximum) is updated. As monotonically increasing integer IDs beginning from
0 are assigned to new unique objects, the maximum ID is equal to the total number of unique objects over time.

4. Adjusting Nodes
Some common node behaviors that you might need to adjust are:
For model.efficientdet:
* model_type: 0, 1, 2, 3, or 4. The larger the number, the higher the accuracy, at the cost of inference speed.
* detect: Object class IDs to be detected. Refer to Object Detection IDs table for the class IDs for each model.
For dabble.tracking:
e tracking_type: Choose either ["iou", "mosse"], described earlier in the How It Works section.

For more adjustable node behaviors not listed here, check out the API Documentation.

Counting Objects Within Zones

It is possible to extend this use case with the Zone Counting use case. For example, if the road were a dual carriageway
and we are only interested counting the vehicles on one side of the road, we could split the video into 2 different zones

and only count the vehicles within the chosen zone. An example of how this can be done is given in the Tracking People
within a Zone tutorial.

7.2.4 People Counting (Over Time)

Overview
People counting over time involves detecting and tracking different persons, and incrementing the count when a new

person appears. This use case can reduce dependency on manual counting, and be applied to areas such as retail
analytics, queue management, or occupancy monitoring.

Our solution automatically detects, tracks and counts people over time. This is explained in the How It Works section.

7.2. Smart Monitoring 117

PeekingDuck, Release developer

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file peo-
ple_counting_over_time.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/people_counting_over_time.yml>

You may like to try it on this sample video.

How It Works

People counting over time comprises three main components:
1. Human detection,
2. Appearance embedding tracking, and
3. Incrementing the count.

1. Human Detection

We use an open source detection model known as JDE to detect persons. JDE has been trained on pedestrian detection
and person search datasets. This allows the application to identify the locations of persons in a video feed. Each of
these locations is represented as a pair of x, y coordinates in the form [z, y1, 22, y2], where (z1,y;) is the top left
corner of the bounding box, and (22, y2) is the bottom right. These are used to form the bounding box of each person
detected. For more information on how to adjust the JDE node, check out the JDE configurable parameters.

2. Appearance Embedding Tracking

To learn appearance embeddings for tracking, a metric learning algorithm with triplet loss is used. Observations are
assigned to tracklets using the Hungarian algorithm. The Kalman filter is used to smooth the trajectories and predict the
locations of previous tracklets in the current frame. The model outputs an ID for each detection based on the appearance
embedding learned.

3. Incrementing the Count

Monotonically increasing integer IDs beginning from 0 are assigned to new unique persons. For example, the first
tracked person is assigned an ID of 0, the second tracked person is assigned an ID of I, and so on. Thus the total
number of unique persons that have appeared in the entire duration is simply the cumulative maximum.

Nodes Used

These are the nodes used in the earlier demo (also in people_counting_over_time.yml):

nodes:
- input.visual:
source: <path/to/video with people>
- model. jde
- dabble.statistics:
maximum: obj_attrs["ids"]
- draw.bbox

(continues on next page)

118 Chapter 7. Use Cases

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/people_counting_over_time.yml
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/people_counting_over_time.yml
https://storage.googleapis.com/peekingduck/videos/people_walking.mp4
https://arxiv.org/abs/1909.12605
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/people_counting_over_time.yml

PeekingDuck, Release developer

(continued from previous page)

- draw.tag:

show: ["ids"]
- draw.legend:

show: ["cum_max"]
- output.screen

1. JDE Node

This node employs a single network to simultaneously output detection results and the corresponding appearance
embeddings of the detected boxes. Therefore JDE stands for Joint Detection and Embedding. Please take a look at the
benchmarks of object tracking models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Statistics Node

The dabble.statistics node retrieves the maximum detected ID for each frame. If the ID exceeds the previous
maximum, the cum_max (cumulative maximum) is updated. As monotonically increasing integer IDs beginning from
0 are assigned to new unique persons, the maximum ID is equal to the total number of unique persons over time.

3. Adjusting Nodes
With regard to the model . jde node, some common behaviors that you might want to adjust are:
e iou_threshold: Specifies the threshold value for Intersection over Union of detections (default = 0.5).

* score_threshold: Specifies the threshold values for the detection confidence (default = 0.5). You may want
to lower this value to increase the number of detections.

* nms_threshold: Specifies the threshold value for non-maximal suppression (default = 0.4). You may want to
lower this value to increase the number of detections.

* min_box_area: Specifies the minimum value for area of detected bounding box. Calculated by wedth x height
(default = 200).

» track_buffer: Specifies the threshold to remove track if track is lost for more frames than this value (default
=30).

Counting People Within Zones

It is possible to extend this use case with the Zone Counting use case. For example, if a CCTV footage shows the
entrance of a mall as well as a road, and we are only interested to apply people counting to the mall entrance, we could
split the video into 2 different zones and only count the people within the chosen zone. An example of how this can be
done is given in the Tracking People within a Zone tutorial.

7.2.5 Zone Counting

Overview

Zone counting creates different zones within a single image and counts the number of objects within each zone sepa-
rately. This is useful in many applications, such as counting vehicles travelling on one side of a road, or counting the
shoppers entering a mall.

See also:

To only count objects within a single zone and ignore all other objects, see the Tracking People within a Zone tutorial.

7.2. Smart Monitoring 119

PeekingDuck, Release developer

Zone counting is done by counting the number of objects detected by the object detection models that fall within the
specified zones. For example, we can count the number of people in the blue and red zones, as shown in the GIF above.
This is explained in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file zone_counting.yml
as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/zone_counting.yml>

How It Works

There are three main components to obtain the zone counts:
1. The detections from the object detection model, which are the bounding boxes,
2. The bottom midpoint of the bounding boxes, derived from the bounding boxes, and
3. The zones, which can be set in the dabble.zone_count configurable parameters.
1. Object Detection

We use an open source object detection model known as YOLOv4 and its smaller and faster variant known as YOLOv4-
tiny to identify the bounding boxes of objects we want to detect. This allows the application to identify where objects
are located within the video feed. The location is returned as a pair of x, y coordinates in the form [z1,y1, T2, y2],
where (1, y1) is the top left corner of the bounding box, and (z2, y2) is the bottom right. These are used to form the
bounding box of each object detected. For more information on how to adjust the yolo node, check out its configurable
parameters.

2. Bounding Box to Bottom Midpoint

Given the top left (x1, y1) and bottom right (x5, y2) coordinates of each bounding box, the bottom midpoint (2, Ypm)
can be computed by taking lowest y coordinate y,, = y2, and the midpoint of the x coordinates xp,, = (z1 + 22)/2.

We found that using the bottom midpoint is the most efficient way to tell if something is in a specified zone. We attribute
this to the use of the top-down or angled camera footages, which are commonly found in the use cases. The bottom
midpoints of the bounding boxes usually correspond to the locations of the objects in these footages.

3. Zones

Zones are created by specifying the x, y coordinates of all the corner points that form the area of the zone in a clockwise
direction. The coordinates can be in either fractions of the resolution or pixels. As an example, blue zone in the zone
counting GIF was created using the following zone:

tto, oj, [0.6, 0], [0.6, 1], [0, 1]]

120 Chapter 7. Use Cases

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/zone_counting.yml
https://arxiv.org/abs/2004.10934

PeekingDuck, Release developer

(0.6,0) or
(0,0) 60% of length (768, 0) 40% of length (1,0) or (1280,0)
L

1

A

(0,1) or (0,720) (0.6,1) or (1,1) or (1280,720)
(768,720)

Given a resolution of 1280 by 720, these correspond to the top-left of the image, 60% of the length at the top of the
image, 60% of the length at the bottom of the image, and the bottom-left of the image. These points form the rectangular
blue zone in a clockwise direction.

Note that because the x, y coordinates are fractions of the image resolution, the resolution config for dabble.
zone_count needs to be set correctly.

For finer control over the exact coordinates, the pixel coordinates can be used instead. Using the same example, the
blue zone can be created using the following zone configuration:

(o, 01, [768, 01, [768, 7201, [0, 720]]

When using pixel coordinates, the resolution is not needed. However, users should check to ensure that the pixel
coordinates given fall within the image resolution so that the zone will work as intended.

Elaboration for this adjustment can be found the “4. Adjusting Nodes” section.

Note: Zones do not have to be rectangular in shape. They can be of any polygonal shape, dictated by the number and
position of the x, y coordinates set in a zone.

4. Zone Counts

Given the bottom midpoints of all detected objects, we check if the points fall within the areas of the specified zones.
If it falls inside any zone, an object count is added for that specific zone. This continues until all objects detected are
accounted for, which gives the final count of objects in each specified zone.

Nodes Used

These are the nodes used in the earlier demo (also in zone_counting.yml):

nodes:
- input.visual:
source: 0
- model.yolo:
detect: ["person"]
- dabble.bbox_to_btm_midpoint
- dabble.zone_count:
resolution: [1280, 720] # Adjust this to your camera's input resolution
zones: [

(continues on next page)

7.2. Smart Monitoring 121

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/zone_counting.yml

PeekingDuck, Release developer

(continued from previous page)

[[0o, 0], [0.6, 0], [0.6, 1], [O®, 111,
[[6.6, 0], [1, 0], [1, 1], [0.6, 1]]
]

- draw.bbox

draw.btm_midpoint

draw.zone

draw.legend:

show: ["zone_count"]
- output.screen

1. Object Detection Node

By default, the node uses the YOLOv4-tiny model for object detection, set to detect people. Please take a look at the
benchmarks of object detection models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Bottom Midpoint Node

The bottom midpoint node is called by including dabble.bbox_to_btm_midpoint in the pipeline config declaration.
This outputs the bottom midpoints of all detected bounding boxes. The node has no configurable parameters.

3. Zone Counting Node

The zone counting node is called by including dabble. zone_count in the run config declaration. This uses the bottom
midpoints of all detected bounding boxes and outputs the number of object counts in each specified zone. The node
configurable parameters can be found below.

4. Adjusting Nodes

The zone counting detections depend on the configuration set in the object detection models, such as the type of object
to detect, etc. For the object detection model used in this demo, please see the yolo node documentation for adjustable
behaviors that can influence the result of the zone counting node.

With regards to the zone counting node, some common node behaviors that you might need to adjust are:

e resolution: If you are planning to use fractions to set the coordinates for the area of the zone, the resolution
should be set to the image/video/livestream resolution used.

* zones: Used to specify the different zones which you would like to set. The coordinates for each zone are given
in a list in a clockwise order. See the Nodes Used section on how to properly configure multiple zones.

For more adjustable node behaviors not listed here, check out the API Documentation.

Zone Counting Crowd Counting

Object Counting (Over Time) | People Counting (Over Time)

Object Counting (Present)

122 Chapter 7. Use Cases

zone_counting.html
crowd_counting.html
object_counting_over_time.html
people_counting_over_time.html
object_counting_present.html

PeekingDuck, Release developer

7.3 COVID-19 Prevention and Control

7.3.1 Face Mask Detection

Overview
Wearing of face masks in public places can help prevent the spread of COVID-19 and other infectious diseases. Al

Singapore has developed a solution that checks whether or not a person is wearing a face mask. This can be used in
places such as malls or shops to ensure that visitors adhere to the guidelines.

We have trained a custom YOLOv4 model to detect whether or not a person is wearing a face mask. This is explained
in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file
face_mask_detection.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/face_mask_detection.yml>

How It Works

The main component is the detection of face mask using the custom YOLOv4 model.
Face Mask Detection

We use an open source object detection model known as YOLOv4 and its smaller and faster variant known as YOLOv4-
tiny to identify the bounding boxes of human faces with and without face masks. This allows the application to identify
the locations of faces and their corresponding classes (no_mask = 0 or mask = 1) in a video feed. Each of these
locations are represented as a pair of x, y coordinates in the form [x1, y1, X2, y2], Where (21, y;) is the top-left corner
of the bounding box, and (z2, y2) is the bottom right. These are used to form the bounding box of each human face
detected.

The model.yolo_face node detects human faces with and without face masks using the YOLOv4-tiny model by
default. The classes are differentiated by the labels and the colors of the bounding boxes when multiple faces are
detected. For more information on how to adjust the yolo_face node, check out its configurable parameters.

7.3. COVID-19 Prevention and Control 123

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/face_mask_detection.yml
https://arxiv.org/abs/2004.10934

PeekingDuck, Release developer

Nodes Used

These are the nodes used in the earlier demo (also in face_mask_detection.yml):

nodes:

- input.visual:
source: 0

model.yolo_face

- draw.bbox:
show_labels: true

output.screen

1. Face Mask Detection Node

The model.yolo_face node is used for face detection and to classify if the face is masked or unmasked. To simply
detect faces without needing to classify if the face is masked, you can also consider the model .mtcnn node.

2. Adjusting Nodes
Some common node behaviors that you might want to adjust are:

* model_type: This specifies the variant of YOLOV4 to be used. By default, the v4tiny model is used, but for
better accuracy, you may want to try the v4 model.

» detect: This specifies the class to be detected where no_mask = 0 and mask = 1. By default, the model detects
faces with and without face masks (default = [0, 1]).

e score_threshold: This specifies the threshold value. Bounding boxes with confidence score lower than the
threshold are discarded. You may want to lower the threshold value to increase the number of detections.

7.3.2 Group Size Checking

Overview

As part of COVID-19 measures, the Singapore Government has set restrictions on the group sizes of social gatherings.
Al Singapore has developed a vision-based group size checker that checks if the group size limit has been violated.
This can be used in many places, such as in malls to ensure that visitors adhere to guidelines, or in workplaces to ensure
employees’ safety.

To check if individuals belong to a group, we check if the physical distance between them is close. The most accurate
way to measure distance is to use a 3D sensor with depth perception, such as a RGB-D camera or a LiDAR. However,
most cameras such as CCTVs and IP cameras usually only produce 2D videos. We developed heuristics that are able to
give an approximate measure of physical distance from 2D videos, addressing this limitation. This is further elaborated
in the How It Works section.

124 Chapter 7. Use Cases

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/face_mask_detection.yml
https://aisingapore.org/2021/05/covid-19-stay-vigilant-with-group-size-checker
https://en.wikipedia.org/wiki/Lidar

PeekingDuck, Release developer

Demo

To try our solution on your own computer, insftall and run PeekingDuck with the configuration file
group_size_checking.yml as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/group_size_checking.yml>

How It Works

There are three main components to obtain the distance between individuals:
1. Human pose estimation using Al,
2. Depth and distance approximation, and
3. Linking individuals to groups.

1. Human Pose Estimation

We use an open source human pose estimation model known as PoseNet to identify key human skeletal points. This
allows the application to identify where individuals are located within the video feed. The coordinates of the various
skeletal points will then be used to determine the distance between individuals.

2. Depth and Distance Approximation

To measure the distance between individuals, we have to estimate the 3D world coordinates from the keypoints in 2D
coordinates. To achieve this, we compute the depth Z from the x, y coordinates using the relationship below:

Scene point
Image point A\
Y1 e A
Camera - -
(H‘~= = : —
Y2 - -
\F
f
-— .
Z

Using the similar triangle rule, we are able to compute Z.

Yi—Y2 [

Y,-Y, Z

where:
» Z = depth or distance of scene point from camera

e f =focal length of camera

7.3. COVID-19 Prevention and Control 125

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/group_size_checking.yml
https://arxiv.org/abs/1505.07427

PeekingDuck, Release developer

e y =y position of image point
* Y =y position of scene point

Y1 — Y5 is a reference or “ground truth length” that is required to obtain the depth. After numerous experiments, it
was decided that the optimal reference length would be the average height of a human torso (height from human hip
to center of face). Width was not used as this value has high variance due to the different body angles of an individual
while facing the camera.

3. Linking Individuals to Groups

Once we have the 3D world coordinates of the individuals in the video, we can compare the distances between each
pair of individuals. If they are close to each other, we assign them to the same group. This is a dynamic connectivity
problem and we use the quick find algorithm to solve it.

Nodes Used

These are the nodes used in the earlier demo (also in group_size_checking.yml):

nodes:
- input.visual:
source: 0

- model.posenet

- dabble.keypoints_to_3d_loc:
focal_length: 1.14
torso_factor: 0.9

- dabble.group_nearby_objs:
near_threshold: 1.5

- dabble.check_large_groups:
group_size_threshold: 2

- draw.pose

- draw.group_bbox_and_tag

- output.screen

1. Pose Estimation Model

By default, we are using the PoseNet model with a ResNet backbone for pose estimation. Please take a look at the
benchmarks of pose estimation models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Adjusting Nodes
Some common node behaviors that you might need to adjust are:

» focal_length & torso_factor: We calibrated these settings using a Logitech c170 webcam, with 2 indi-
viduals of heights about 1.7m. We recommend running a few experiments on your setup and calibrate these
accordingly.

e near_threshold: The maximum distance between 2 individuals, in meters, for them to be considered to be
part of a group.

* group_size_threshold: The acceptable group size limit.
For more adjustable node behaviors not listed here, check out the AP/ Documentation.
3. Using Object Detection (Optional)

It is possible to use object detection models instead of pose estimation. To do so, replace the model node accordingly,
and replace the node dabble.keypoints_to_3d_loc with dabble.bbox_to_3d_loc. The reference or “ground
truth length” in this case would be the average height of a human, multiplied by a small factor.

126 Chapter 7. Use Cases

https://regenerativetoday.com/union-find-data-structure-quick-find-algorithm
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/group_size_checking.yml

PeekingDuck, Release developer

You might need to use this approach if running on a resource-limited device such as a Raspberry Pi. In this situation,
you’ll need to use the lightweight models; we find lightweight object detectors are generally better than lightweight
pose estimation models in detecting humans.

The trade-off here is that the estimated distance between individuals will be less accurate. This is because for object
detectors, the bounding box will be compared with the average height of a human, but the bounding box height decreases
if the person is sitting down or bending over.

Using with Social Distancing

To combat COVID-19, individuals are encouraged to maintain physical distance from each other. We’ve developed a
social distancing tool that checks if individuals are too close to each other.

The nodes for social distancing can be stacked with group size checker, to perform both at the same time. Check out
the Social Distancing use case to find out which nodes are used.

7.3.3 Social Distancing
Overview

To support the fight against COVID-19, Al Singapore developed a solution to encourage individuals to maintain physical
distance from each other. This can be used in many places, such as in malls to encourage social distancing in long
queues, or in workplaces to ensure employees’ well-being. An example of the latter is HP Inc., which collaborated with
us to deploy this solution on edge devices in its manufacturing facility in Singapore.

The most accurate way to measure distance is to use a 3D sensor with depth perception, such as a RGB-D camera or
a LiDAR. However, most cameras such as CCTVs and IP cameras usually only produce 2D videos. We developed
heuristics that are able to give an approximate measure of physical distance from 2D videos, addressing this limitation.
This is explained in the How It Works section.

Demo

To try our solution on your own computer, install and run PeekingDuck with the configuration file social_distancing.yml
as shown:

Terminal Session

[~user] > peekingduck run --config_path <path/to/social_distancing.yml>

7.3. COVID-19 Prevention and Control 127

https://aisingapore.org/2020/06/hp-social-distancing
https://en.wikipedia.org/wiki/Lidar
https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/social_distancing.yml

PeekingDuck, Release developer

How It Works

There are two main components to obtain the distance between individuals: #. Human pose estimation using Al, and
#. Depth and distance approximation using heuristics.

1. Human Pose Estimation

We use an open source human pose estimation model known as PoseNet to identify key human skeletal points. This
allows the application to identify where individuals are located within the video feed. The coordinates of the various
skeletal points will then be used to determine the distance between individuals.

2. Depth and Distance Approximation

To measure the distance between individuals, we have to estimate the 3D world coordinates from the keypoints in 2D
coordinates. To achieve this, we compute the depth Z from the x, y coordinates using the relationship below:

Scene point
Image point Yl
Y1 e A
Camera - -
(MN== : : _
Y2 - -
\F
f
-— .
Z

Using the similar triangle rule, we are able to compute Z.

Yi—Y2 [

Y,- Y, Z

where:
* Z = depth or distance of scene point from camera
e f =focal length of camera
e y =y position of image point
* Y =y position of scene point

Y1 — Y5 is a reference or “ground truth length” that is required to obtain the depth. After numerous experiments, it
was decided that the optimal reference length would be the average height of a human torso (height from human hip
to center of face). Width was not used as this value has high variance due to the different body angles of an individual
while facing the camera.

Once we have the 3D world coordinates of the individuals in the video, we can compare the distances between each
pair of individuals and check if they are too close to each other.

128 Chapter 7. Use Cases

https://arxiv.org/abs/1505.07427

PeekingDuck, Release developer

Nodes Used

These are the nodes used in the earlier demo (also in social_distancing.yml):

nodes:
- input.visual:
source: 0

- model.posenet

- dabble.keypoints_to_3d_loc:
focal_length: 1.14
torso_factor: 0.9

- dabble.check_nearby_objs:
near_threshold: 1.5
tag_msg: "TOO CLOSE!"

- draw.pose

- draw.tag:
show: ["flags"]

- output.screen

1. Pose Estimation Model

By default, we are using the PoseNet model with a ResNet backbone for pose estimation. Please take a look at the
benchmarks of pose estimation models that are included in PeekingDuck if you would like to use a different model or
model type better suited to your use case.

2. Adjusting Nodes
Some common node behaviors that you might need to adjust are:

e focal_length & torso_factor: We calibrated these settings using a Logitech c170 webcam, with 2 indi-
viduals of heights about 1.7m. We recommend running a few experiments on your setup and calibrate these
accordingly.

* tag_msg: The message to show when individuals are too close.

* near_threshold: The minimum acceptable distance between 2 individuals, in meters. For example, if the
threshold is set at 1.5m, and 2 individuals are standing 2.0m apart, tag_msg doesn’t show as they are standing
further apart than the threshold. The larger this number, the stricter the social distancing.

For more adjustable node behaviors not listed here, check out the AP/ Documentation.
3. Using Object Detection (Optional)

It is possible to use object detection models instead of pose estimation. To do so, replace the model node accordingly,
and replace the dabble.keypoints_to_3d_loc node with dabble.bbox_to_3d_loc. The reference or “ground
truth length” in this case would be the average height of a human, multiplied by a small factor.

You might need to use this approach if running on a resource-limited device such as a Raspberry Pi. In this situa-
tion, you’ll need to use the lightweight models, and we find that lightweight object detectors are generally better than
lightweight pose estimation models in detecting humans.

The trade-off here is that the estimated distance between individuals will be less accurate. This is because for object
detectors, the bounding box will be compared with the average height of a human, but the bounding box height decreases
if the person is sitting down or bending over.

7.3. COVID-19 Prevention and Control 129

https://github.com/aisingapore/PeekingDuck/blob/main/use_cases/social_distancing.yml

PeekingDuck, Release developer

Using with Group Size Checker
As part of COVID-19 measures, the Singapore Government has set restrictions on the group sizes of social gatherings.
We’ve developed a group size checker that checks if the group size limit has been violated.

The nodes for group size checker can be stacked with social distancing, to perform both at the same time. Check out
the Group Size Checking use case to find out which nodes are used.

Social Distancing Group Size Checking

Face Mask Detection

130 Chapter 7. Use Cases

https://aisingapore.org/2021/05/covid-19-stay-vigilant-with-group-size-checker
social_distancing.html
group_size_checking.html
face_mask_detection.html

CHAPTER
EIGHT

FAQ AND TROUBLESHOOTING

8.1 How can | post-process and visualize model outputs?

The common output of all model nodes is bboxes. bboxes can be used for subsequent actions like counting (dabble.
bbox_count), drawing (draw.bbox), tagging (draw. tag), etc. You can also create custom nodes which take bboxes
as an input to visualize your results.

8.2 How can | dynamically use all prior outputs as the input at run
time?

Specifying “all” as the input allows the node to receive all prior outputs as the input. This is used by nodes such as
draw.legend and output.csv_writer.

8.3 How do | debug custom nodes?

You can add code in custom nodes to print the contents of their inputs. For more info, please see the tutorial on
debugging.

8.4 Why does input.visual progress stop before 100%?

input.visual provides progress information if it is able to get a total frame count for the input. This number is
obtained using opencv’s CV_CAP_PROP_FRAME_COUNT API, which attempts to estimate the total frame count using
the input media’s metadata duration and FPS. However, the total frame count is only an estimate. It is not guaranteed to
be accurate because it is affected by potential errors, such as frame corruption, video decoder failure, inaccurate FPS,
and rounding errors.

131

PeekingDuck, Release developer

8.5 Why does the output screen flash briefly and disappear on my
second run?

If you are running PeekingDuck on the Windows Subsystem for Linux (WSL), this erroneous behavior may be caused
by a WSL bug where the key buffer is not flushed. Please refer to this GitHub issue for more details.

132 Chapter 8. FAQ and Troubleshooting

https://github.com/aisingapore/PeekingDuck/issues/630

CHAPTER
NINE

GLOSSARY

The following are built-in data types recognized by PeekingDuck nodes. Users can define custom data types when
working with custom nodes.

(input) all (Any)
This data type contains all the outputs from preceding nodes, granting a large degree of flexibility to nodes that
receive it. Examples of such nodes include draw.legend, dabble.statistics, and output.csv_writer.

bboxes (numpy.ndarray)
A NumPy array of shape (V,4) containing normalized bounding box coordinates of N detected objects. Each
bounding box is represented as (x1, y1, 2, y2) Where (z1,y1) is the top-left corner and (2, y2) is the bottom-
right corner. The order corresponds to bbox_labels and bbox_scores.

bbox_labels (numpy.ndarray)
A NumPy array of shape (V) containing strings representing the labels of detected objects. The order corre-
sponds to bboxes and bbox_scores.

bbox_scores (numpy.ndarray)
A NumPy array of shape (V) containing confidence scores [0, 1] of detected objects. The order corresponds to
bboxes and bbox_labels.

btm_midpoint (List[Tuple[int, int]])
A list of tuples each representing the (z, y) coordinates of the bottom middle of a bounding box for use in zone
analytics. The order corresponds to bboxes.

count (int)
An integer representing the number of counted objects.

cum_avg (float)
Cumulative average of an attribute over time.

cum_max (float | int)
Cumulative maximum of an attribute over time.

cum_min (float | int)
Cumulative minimum of an attribute over time.

density_map (numpy.ndarray)
A NumPy array of shape (H, W) representing the number of persons per pixel. H and W are the height and
width of the input image, respectively. The sum of the array is the estimated total number of people.

filename (str)
The filename of video/image being read.

fps (float)
A float representing the Frames Per Second (FPS) when processing a live video stream or a recorded video.

133

PeekingDuck, Release developer

img (numpy.ndarray)
A NumPy array of shape (height, width, channels) containing the image data in BGR format.

keypoints (numpy.ndarray)
A NumPy array of shape (N, K, 2) containing the (z,y) coordinates of detected poses where N is the number
of detected poses, and K is the number of individual keypoints. Keypoints with low confidence scores (below
threshold) will be replaced by -1.

keypoint_conns (numpy.ndarray)
A NumPy array of shape (N, D}, 2,2) containing the (z,y) coordinates of adjacent keypoint pairs where N is

the number of detected poses, and D), is the number of valid keypoint pairs for the the n-th pose where both
keypoints are detected.

keypoint_scores (numpy.ndarray)
A NumPy array of shape (NN, K) containing the confidence scores of detected poses where N is the number of
detected poses and K is the number of individual keypoints. The confidence score has a range of [0, 1].

large_groups (List[int])
A list of integers representing the group IDs of groups that have exceeded the size threshold.

masks (numpy .ndarray)
A NumPy array of shape (N, H, W) containing N detected binarized masks where H and W are the height and
width of the masks. The order corresponds to bbox_labels.

(input) none
No inputs required.

(output) none
No outputs produced.

obj_3D_locs (List [numpy.ndarray])
A list of N NumPy arrays representing the 3D coordinates (z,y, z) of an object associated with a detected
bounding box.

obj_attrs (Dict[str, Any])
A dictionary of attributes associated with each bounding box, in the same order as bboxes. Different nodes that
produce this 0bj_attrs output type may contribute different attributes.

pipeline_end (bool)
A boolean that evaluates to True when the pipeline is completed. Suitable for operations that require the entire
inference pipeline to be completed before running.

saved_video_£fps (float)
FPS of the recorded video, upon filming.

zones (List[List[Tuple[float, ...]1]1])
A nested list of Z zones. Each zone is described by 3 or more points which contains the (z,y) coordinates
forming the boundary of a zone. The order corresponds to zone_count.

zone_count (List[int])
A list of integers representing the count of a pre-selected object class (for example, “person’) detected in each
specified zone. The order corresponds to zones.

Deprecated since version 1.2.0: obj_tags (List[str]) is deprecated and now subsumed under obj_attrs. dabble.
check_nearby_objs now accesses this attribute by using the £lags key of obj_attrs. draw. tag has been refactored
for more drawing flexibility by accepting obj_attrs as input.

Deprecated since version 1.2.0: obj_groups (List[int]) is deprecated and now subsumed under 0bj_attrs. Affected
nodes (dabble.group_nearby_objs, dabble.check_large_groups, and draw.group_bbox_and_tag) now ac-
cess this attribute by using the groups key of obj_attrs.

134 Chapter 9. Glossary

CHAPTER
TEN

API DOCUMENTATION

input Reads data from a given input.

augment Performs image processing.

model Deep learning model nodes for computer vision.

dabble Algorithms that perform calculations/heuristics on the
outputs of model.

draw Draws results/outputs to an image.

output Writes/displays the outputs of the pipeline.

10.1 input

Description

Reads data from a given input.
Deprecated since version 1.2.0: input.live and input.recorded are deprecated. They have been replaced by the
input.visual node.

Modules

10.2 augment

Description

Performs image processing. This can be done before or after the model.

135

PeekingDuck, Release developer

Modules

10.3 model

Description

Deep learning model nodes for computer vision.

Modules

10.4 dabble

Description

Algorithms that perform calculations/heuristics on the outputs of model.

Modules

10.5 draw

Description

Draws results/outputs to an image.

Deprecated since version 1.2.0: draw.image_processor is deprecated, and replaced by the nodes augment.
brightness and augment.contrast.

Changed in version 2.0.0: draw.poses has been renamed to draw. pose.

Modules

136 Chapter 10. API Documentation

PeekingDuck, Release developer

10.6 output

Description

Writes/displays the outputs of the pipeline.

Modules

10.6. output 137

PeekingDuck, Release developer

138 Chapter 10. API Documentation

a
augment, 135
d

dabble, 136
draw, 136

i

input, 135
m

model, 136
0]

output, 137

PYTHON MODULE INDEX

139

PeekingDuck, Release developer

140 Python Module Index

Symbols
(input) all, 133
(input) none, 134
(output) none, 134

A

augment
module, 135

B

bbox_labels, 133
bbox_scores, 133
bboxes, 133

btm_midpoint, 133

C

count, 133

cum_avg, 133
cum_max, 133
cum_min, 133

D

dabble

module, 136
density_map, 133
draw

module, 136

F

filename, 133
fps, 133

img, 134
input
module, 135

K

keypoint_conns, 134
keypoint_scores, 134

keypoints, 134

INDEX

L

large_groups, 134

M

masks, 134

model
module, 136

module
augment, 135
dabble, 136
draw, 136
input, 135
model, 136
output, 137

O

obj_3D_locs, 134
obj_attrs, 134

output

module, 137
P
pipeline_end, 134
S
saved_video_1£ps, 134
4
zone_count, 134
zones, 134

141

	Introduction
	What is PeekingDuck?
	Features
	Build realtime CV pipelines
	Leverage on SOTA models
	Create custom nodes

	How PeekingDuck Works
	Acknowledgements
	License
	Communities

	Getting Started
	Documentation Convention
	Standard Install
	Install PeekingDuck
	Verify PeekingDuck Installation

	Custom Install
	Arm64
	Apple Silicon Mac

	Tutorials
	“Hello Computer Vision”
	Pose Estimation
	Object Detection
	Using a WebCam
	Pipelines, Nodes and Configs
	Bounding Box vs Image Coordinates

	Duck Confit
	More Object Detection
	Record Video File with FPS
	Configuration - Behind the Scenes
	Augmenting Images

	Custom Nodes
	Recipe 1: Object Detection Score
	Recipe 2: Keypoints, Count Hand Waves
	Recipe 3: Debugging
	Other Recipes to Create Custom Nodes
	CLI Recipe
	Pipeline Recipe

	Peaking Duck
	Interfacing with SQL
	Counting Cars
	Object Tracking
	Tracking People within a Zone

	Using Callbacks
	Introduction to Using Callbacks in PeekingDuck
	Pipeline Events
	Callback Definition

	Interfacing with SQL Using Callbacks

	Calling PeekingDuck in Python
	Using PeekingDuck’s Pipeline
	Setting Up
	Creating a Custom Node for Debugging
	Creating the Python Script
	Running the Python Script

	Integrating with Your Workflow
	Import the Modules
	Initialize PeekingDuck Nodes
	Create a Dataset Loader
	Create a License Plate Parser Class
	The Inference Loop

	Using Your Own Models
	Model Training
	Setting Up
	Update Training Script
	Training the Model

	Using Your Trained Model with PeekingDuck
	Converting to a Custom Model Node
	Using the Classifier in a PeekingDuck Pipeline

	Custom Object Detection Models

	Using Model Hub Nodes
	List of Model Hub Nodes
	Hugging Face Hub
	Object Detection
	Supported Models
	Class Labels
	Pipeline

	Instance Segmentation
	Supported Models
	Class Labels
	Pipeline

	MediaPipe Solutions
	Object Detection (Face)
	Supported Model Types
	Pipeline

	Pose Estimation (Body)
	Supported Model Types
	Pipeline

	PeekingDuck Ecosystem
	PeekingDuck Viewer
	Running the Viewer
	Navigating the Output Video
	Using the Pipeline Playlist
	Exiting the Viewer

	Model Resources & Information
	Object Detection Models
	List of Object Detection Models
	Benchmarks
	Inference Speed
	Hardware
	Test Conditions

	Model Accuracy
	Dataset
	Test Conditions

	Object Detection IDs
	General Object Detection
	Face Detection
	Model Hub Models

	Pose Estimation Models
	List of Pose Estimation Models
	Benchmarks
	Inference Speed
	Hardware
	Test Conditions

	Model Accuracy
	Dataset
	Test Conditions

	Keypoint IDs
	Whole Body

	Object Tracking Models
	List of Object Tracking Models
	Benchmarks
	Inference Speed
	Hardware
	Test Conditions

	Model Accuracy
	Dataset

	Crowd Counting Models
	List of Crowd Counting Models
	Benchmarks
	Model Accuracy
	Dataset

	Instance Segmentation Models
	List of Instance Segmentation Models
	Benchmarks
	Inference Speed
	Hardware
	Test Conditions

	Model Accuracy
	Evaluation on masks
	Evaluation on bounding boxes
	Dataset
	Test Conditions

	Instance Segmentation IDs
	General Instance Segmentation

	Bibliography
	Legend
	Object Detection
	Pose Estimation
	Crowd Counting
	Object Tracking
	Instance Segmentation

	Edge AI
	Installing TensorRT
	Using TensorRT Models
	Performance Speedup
	NVIDIA Jetson Xavier NX with 8GB RAM
	NVIDIA Jetson Xavier AGX with 16GB RAM
	Test Conditions

	References

	Use Cases
	Privacy Protection
	Privacy Protection (Faces)
	Overview
	Demo
	How It Works
	Nodes Used

	Privacy Protection (License Plates)
	Overview
	Demo
	How It Works
	Nodes Used

	Privacy Protection (People & Computer Screens)
	Overview
	Demo
	How It Works
	Nodes Used

	Smart Monitoring
	Crowd Counting
	Overview
	Demo
	How It Works
	Nodes Used

	Object Counting (Present)
	Overview
	Demo
	How It Works
	Nodes Used

	Object Counting (Over Time)
	Overview
	Demo
	How It Works
	Nodes Used
	Counting Objects Within Zones

	People Counting (Over Time)
	Overview
	Demo
	How It Works
	Nodes Used
	Counting People Within Zones

	Zone Counting
	Overview
	Demo
	How It Works
	Nodes Used

	COVID-19 Prevention and Control
	Face Mask Detection
	Overview
	Demo
	How It Works
	Nodes Used

	Group Size Checking
	Overview
	Demo
	How It Works
	Nodes Used
	Using with Social Distancing

	Social Distancing
	Overview
	Demo
	How It Works
	Nodes Used
	Using with Group Size Checker

	FAQ and Troubleshooting
	How can I post-process and visualize model outputs?
	How can I dynamically use all prior outputs as the input at run time?
	How do I debug custom nodes?
	Why does input.visual progress stop before 100%?
	Why does the output screen flash briefly and disappear on my second run?

	Glossary
	API Documentation
	input
	augment
	model
	dabble
	draw
	output

	Python Module Index
	Index

